About the Project

Pochhammer%20double-loop%20contour

AdvancedHelp

(0.003 seconds)

11—20 of 260 matching pages

11: 17.13 Integrals
β–Ί
17.13.1 c d ( q ⁒ x / c ; q ) ⁒ ( q ⁒ x / d ; q ) ( a ⁒ x / c ; q ) ⁒ ( b ⁒ x / d ; q ) ⁒ d q x = ( 1 q ) ⁒ ( q ; q ) ⁒ ( a ⁒ b ; q ) ⁒ c ⁒ d ⁒ ( c / d ; q ) ⁒ ( d / c ; q ) ( a ; q ) ⁒ ( b ; q ) ⁒ ( c + d ) ⁒ ( b ⁒ c / d ; q ) ⁒ ( a ⁒ d / c ; q ) ,
β–Ί
17.13.2 c d ( q ⁒ x / c ; q ) ⁒ ( q ⁒ x / d ; q ) ( x ⁒ q Ξ± / c ; q ) ⁒ ( x ⁒ q Ξ² / d ; q ) ⁒ d q x = Ξ“ q ⁑ ( Ξ± ) ⁒ Ξ“ q ⁑ ( Ξ² ) Ξ“ q ⁑ ( Ξ± + Ξ² ) ⁒ c ⁒ d c + d ⁒ ( c / d ; q ) ⁒ ( d / c ; q ) ( q Ξ² ⁒ c / d ; q ) ⁒ ( q Ξ± ⁒ d / c ; q ) .
β–Ί
17.13.3 0 t Ξ± 1 ⁒ ( t ⁒ q Ξ± + Ξ² ; q ) ( t ; q ) ⁒ d t = Ξ“ ⁑ ( Ξ± ) ⁒ Ξ“ ⁑ ( 1 Ξ± ) ⁒ Ξ“ q ⁑ ( Ξ² ) Ξ“ q ⁑ ( 1 Ξ± ) ⁒ Ξ“ q ⁑ ( Ξ± + Ξ² ) ,
β–Ί
17.13.4 0 t Ξ± 1 ⁒ ( c ⁒ t ⁒ q Ξ± + Ξ² ; q ) ( c ⁒ t ; q ) ⁒ d q t = Ξ“ q ⁑ ( Ξ± ) ⁒ Ξ“ q ⁑ ( Ξ² ) ⁒ ( c ⁒ q Ξ± ; q ) ⁒ ( q 1 Ξ± / c ; q ) Ξ“ q ⁑ ( Ξ± + Ξ² ) ⁒ ( c ; q ) ⁒ ( q / c ; q ) .
12: 16.13 Appell Functions
β–Ί
16.13.1 F 1 ⁑ ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m + n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , max ⁑ ( | x | , | y | ) < 1 ,
β–Ί
16.13.2 F 2 ⁑ ( α ; β , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m ⁒ ( γ ) n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , | x | + | y | < 1 ,
β–Ί
16.13.3 F 3 ⁑ ( α , α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m ⁒ ( α ) n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m + n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , max ⁑ ( | x | , | y | ) < 1 ,
β–Ί
16.13.4 F 4 ⁑ ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m + n ( γ ) m ⁒ ( γ ) n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , | x | + | y | < 1 .
13: 17.2 Calculus
β–ΊFor n = 0 , 1 , 2 , , … … β–ΊFor properties of the function f ⁑ ( q ) = q 1 / 24 ⁒ Ξ· ⁑ ( ln ⁑ q 2 ⁒ Ο€ ⁒ i ) = ( q ; q ) see §27.14. … β–Ί
17.2.18 ( a ⁒ q k ; q ) n k = ( a ; q ) n ( a ; q ) k .
β–Ί
17.2.21 ( a 2 ; q 2 ) n = ( a ; q ) n ⁒ ( a ; q ) n ,
14: 25.5 Integral Representations
β–Ί
25.5.7 ΞΆ ⁑ ( s ) = 1 2 + 1 s 1 + m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ ( s ) 2 ⁒ m 1 + 1 Ξ“ ⁑ ( s ) ⁒ 0 ( 1 e x 1 1 x + 1 2 m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ x 2 ⁒ m 1 ) ⁒ x s 1 e x ⁒ d x , ⁑ s > ( 2 ⁒ n + 1 ) , n = 1 , 2 , 3 , .
β–Ί
§25.5(iii) Contour Integrals
β–Ί
25.5.20 ΞΆ ⁑ ( s ) = Ξ“ ⁑ ( 1 s ) 2 ⁒ Ο€ ⁒ i ⁒ ( 0 + ) z s 1 e z 1 ⁒ d z , s 1 , 2 , ,
β–Ίwhere the integration contour is a loop around the negative real axis; it starts at , encircles the origin once in the positive direction without enclosing any of the points z = ± 2 ⁒ Ο€ ⁒ i , ± 4 ⁒ Ο€ ⁒ i , …, and returns to . …The contour here is any loop that encircles the origin in the positive direction not enclosing any of the points ± Ο€ ⁒ i , ± 3 ⁒ Ο€ ⁒ i , ….
15: 17.11 Transformations of q -Appell Functions
β–Ί
17.11.1 Ξ¦ ( 1 ) ⁑ ( a ; b , b ; c ; q ; x , y ) = ( a , b ⁒ x , b ⁒ y ; q ) ( c , x , y ; q ) ⁒ Ο• 2 3 ⁑ ( c / a , x , y b ⁒ x , b ⁒ y ; q , a ) ,
β–Ί
17.11.2 Ξ¦ ( 2 ) ⁑ ( a ; b , b ; c , c ; q ; x , y ) = ( b , a ⁒ x ; q ) ( c , x ; q ) ⁒ n , r ≧ 0 ( a , b ; q ) n ⁒ ( c / b , x ; q ) r ⁒ b r ⁒ y n ( q , c ; q ) n ⁒ ( q ; q ) r ⁒ ( a ⁒ x ; q ) n + r ,
β–Ί
17.11.3 Ξ¦ ( 3 ) ⁑ ( a , a ; b , b ; c ; q ; x , y ) = ( a , b ⁒ x ; q ) ( c , x ; q ) ⁒ n , r ≧ 0 ( a , b ; q ) n ⁒ ( x ; q ) r ⁒ ( c / a ; q ) n + r ⁒ a r ⁒ y n ( q , c / a ; q ) n ⁒ ( q , b ⁒ x ; q ) r .
β–Ί
17.11.4 m 1 , , m n ≧ 0 ( a ; q ) m 1 + m 2 + β‹― + m n ⁒ ( b 1 ; q ) m 1 ⁒ ( b 2 ; q ) m 2 ⁒ β‹― ⁒ ( b n ; q ) m n ⁒ x 1 m 1 ⁒ x 2 m 2 ⁒ β‹― ⁒ x n m n ( q ; q ) m 1 ⁒ ( q ; q ) m 2 ⁒ β‹― ⁒ ( q ; q ) m n ⁒ ( c ; q ) m 1 + m 2 + β‹― + m n = ( a , b 1 ⁒ x 1 , b 2 ⁒ x 2 , , b n ⁒ x n ; q ) ( c , x 1 , x 2 , , x n ; q ) ⁒ Ο• n n + 1 ⁑ ( c / a , x 1 , x 2 , , x n b 1 ⁒ x 1 , b 2 ⁒ x 2 , , b n ⁒ x n ; q , a ) .
16: 25.11 Hurwitz Zeta Function
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 25.11.1: Hurwitz zeta function ΞΆ ⁑ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
β–Ί
25.11.10 ΢ ⁑ ( s , a ) = n = 0 ( s ) n n ! ⁒ ΢ ⁑ ( n + s ) ⁒ ( 1 a ) n , s 1 , | a 1 | < 1 .
β–Ί
25.11.28 ΞΆ ⁑ ( s , a ) = 1 2 ⁒ a s + a 1 s s 1 + k = 1 n B 2 ⁒ k ( 2 ⁒ k ) ! ⁒ ( s ) 2 ⁒ k 1 ⁒ a 1 s 2 ⁒ k + 1 Ξ“ ⁑ ( s ) ⁒ 0 ( 1 e x 1 1 x + 1 2 k = 1 n B 2 ⁒ k ( 2 ⁒ k ) ! ⁒ x 2 ⁒ k 1 ) ⁒ x s 1 ⁒ e a ⁒ x ⁒ d x , ⁑ s > ( 2 ⁒ n + 1 ) , s 1 , ⁑ a > 0 .
β–Ίwhere the integration contour is a loop around the negative real axis as described for (25.5.20). … β–Ί
25.11.43 ΢ ⁑ ( s , a ) a 1 s s 1 1 2 ⁒ a s k = 1 B 2 ⁒ k ( 2 ⁒ k ) ! ⁒ ( s ) 2 ⁒ k 1 ⁒ a 1 s 2 ⁒ k .
17: 8 Incomplete Gamma and Related
Functions
18: 28 Mathieu Functions and Hill’s Equation
19: Errata
β–Ί
  • Equation (17.11.2)
    17.11.2 Ξ¦ ( 2 ) ⁑ ( a ; b , b ; c , c ; q ; x , y ) = ( b , a ⁒ x ; q ) ( c , x ; q ) ⁒ n , r ≧ 0 ( a , b ; q ) n ⁒ ( c / b , x ; q ) r ⁒ b r ⁒ y n ( q , c ; q ) n ⁒ ( q ; q ) r ⁒ ( a ⁒ x ; q ) n + r

    The factor ( q ) r originally used in the denominator has been corrected to be ( q ; q ) r .

  • β–Ί
  • Linking

    Pochhammer and q -Pochhammer symbols in several equations now correctly link to their definitions.

  • β–Ί
  • Subsection 17.2(i)

    A sentence was added recommending §27.14(ii) for properties of ( q ; q ) .

  • β–Ί
  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • β–Ί
  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 20: 5.11 Asymptotic Expansions
    β–Ί
    5.11.5 g k = 2 ⁒ ( 1 2 ) k ⁒ a 2 ⁒ k ,
    β–ΊWrench (1968) gives exact values of g k up to g 20 . … β–Ί
    5.11.19 Ξ“ ⁑ ( z + a ) ⁒ Ξ“ ⁑ ( z + b ) Ξ“ ⁑ ( z + c ) k = 0 ( 1 ) k ⁒ ( c a ) k ⁒ ( c b ) k k ! ⁒ Ξ“ ⁑ ( a + b c + z k ) .