About the Project

Olver algorithm

AdvancedHelp

(0.002 seconds)

11—20 of 22 matching pages

11: Bibliography L
  • W. R. Leeb (1979) Algorithm 537: Characteristic values of Mathieu’s differential equation. ACM Trans. Math. Software 5 (1), pp. 112–117.
  • D. A. Levine (1969) Algorithm 344: Student’s t-distribution [S14]. Comm. ACM 12 (1), pp. 37–38.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.
  • Y. L. Luke (1977b) Algorithms for the Computation of Mathematical Functions. Academic Press, New York.
  • 12: Bibliography S
  • B. E. Sagan (2001) The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. 2nd edition, Graduate Texts in Mathematics, Vol. 203, Springer-Verlag, New York.
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • G. W. Stewart (2001) Matrix Algorithms. Vol. 2: Eigensystems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • A. N. Stokes (1980) A stable quotient-difference algorithm. Math. Comp. 34 (150), pp. 515–519.
  • Stony Brook Algorithm Repository (website) Department of Computer Science, Stony Brook University, New York.
  • 13: Bibliography Z
  • M. R. Zaghloul and A. N. Ali (2011) Algorithm 916: computing the Faddeyeva and Voigt functions. ACM Trans. Math. Software 38 (2), pp. Art. 15, 22.
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • M. R. Zaghloul (2017) Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44 (2), pp. 22:1–22:9.
  • Zeilberger (website) Doron Zeilberger’s Maple Packages and Programs Department of Mathematics, Rutgers University, New Jersey.
  • Ya. M. Zhileĭkin and A. B. Kukarkin (1995) A fast Fourier-Bessel transform algorithm. Zh. Vychisl. Mat. i Mat. Fiz. 35 (7), pp. 1128–1133 (Russian).
  • 14: 14.34 Software
    In this section we provide links to the research literature describing the implementation of algorithms in software for the evaluation of functions described in this chapter. …
  • Olver and Smith (1983). Integer order. Fortran.

  • 15: Bibliography H
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • J. R. Herndon (1961a) Algorithm 55: Complete elliptic integral of the first kind. Comm. ACM 4 (4), pp. 180.
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • G. W. Hill and A. W. Davis (1973) Algorithm 442: Normal deviate. Comm. ACM 16 (1), pp. 51–52.
  • I. D. Hill (1973) Algorithm AS66: The normal integral. Appl. Statist. 22 (3), pp. 424–427.
  • 16: Bibliography
  • R. W. Abernathy and R. P. Smith (1993) Algorithm 724: Program to calculate F-percentiles. ACM Trans. Math. Software 19 (4), pp. 481–483.
  • A. G. Adams (1969) Algorithm 39: Areas under the normal curve. The Computer Journal 12 (2), pp. 197–198.
  • D. W. Albrecht, E. L. Mansfield, and A. E. Milne (1996) Algorithms for special integrals of ordinary differential equations. J. Phys. A 29 (5), pp. 973–991.
  • F. A. Alhargan (2000) Algorithm 804: Subroutines for the computation of Mathieu functions of integer orders. ACM Trans. Math. Software 26 (3), pp. 408–414.
  • D. E. Amos (1983b) Algorithm 610. A portable FORTRAN subroutine for derivatives of the psi function. ACM Trans. Math. Software 9 (4), pp. 494–502.
  • 17: 9.17 Methods of Computation
    For further information see Lozier and Olver (1993) and Fabijonas et al. (2004). … In consequence of §9.6(i), algorithms for generating Bessel functions, Hankel functions, and modified Bessel functions (§10.74) can also be applied to Ai ( z ) , Bi ( z ) , and their derivatives. …
    18: Bibliography M
  • A. J. MacLeod (1989) Algorithm AS 245. A robust and reliable algorithm for the logarithm of the gamma function. Appl. Statist. 38 (2), pp. 397–402.
  • K. L. Majumder and G. P. Bhattacharjee (1973) Algorithm AS 63. The incomplete beta integral. Appl. Statist. 22 (3), pp. 409–411.
  • J. N. Merner (1962) Algorithm 149: Complete elliptic integral. Comm. ACM 5 (12), pp. 605.
  • R. J. Moore (1982) Algorithm AS 187. Derivatives of the incomplete gamma integral. Appl. Statist. 31 (3), pp. 330–335.
  • J. Muller (1997) Elementary Functions: Algorithms and Implementation. Birkhäuser Boston Inc., Boston, MA.
  • 19: Bibliography B
  • D. H. Bailey (1993) Algorithm 719: Multiprecision translation and execution of Fortran programs. ACM Trans. Math. Software 19 (3), pp. 288–319.
  • A. R. Barnett (1981a) An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy. Comput. Phys. Comm. 21 (3), pp. 297–314.
  • A. R. Booker, A. Strömbergsson, and H. Then (2013) Bounds and algorithms for the K -Bessel function of imaginary order. LMS J. Comput. Math. 16, pp. 78–108.
  • W. Börsch-Supan (1960) Algorithm 21: Bessel function for a set of integer orders. Comm. ACM 3 (11), pp. 600.
  • R. P. Brent (1978b) Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]. ACM Trans. Math. Software 4 (1), pp. 71–81.
  • 20: Bibliography P
  • K. A. Paciorek (1970) Algorithm 385: Exponential integral Ei ( x ) . Comm. ACM 13 (7), pp. 446–447.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. Piessens and M. Branders (1984) Algorithm 28. Algorithm for the computation of Bessel function integrals. J. Comput. Appl. Math. 11 (1), pp. 119–137.
  • G. P. M. Poppe and C. M. J. Wijers (1990) Algorithm 680: Evaluation of the complex error function. ACM Trans. Math. Software 16 (1), pp. 47.
  • P. J. Prince (1975) Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 1 (4), pp. 372–379.