About the Project

Neville%E2%80%99s

AdvancedHelp

(0.002 seconds)

11—20 of 609 matching pages

11: 20.15 Tables
Tables of Nevilles theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
12: Bibliography N
  • National Physical Laboratory (1961) Modern Computing Methods. 2nd edition, Notes on Applied Science, No. 16, Her Majesty’s Stationery Office, London.
  • G. Nemes (2020) An extension of Laplace’s method. Constr. Approx. 51 (2), pp. 247–272.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. H. Neville (1951) Jacobian Elliptic Functions. 2nd edition, Clarendon Press, Oxford.
  • A. Nijenhuis and H. S. Wilf (1975) Combinatorial Algorithms. Academic Press, New York.
  • 13: 20.11 Generalizations and Analogs
    §20.11(ii) Ramanujan’s Theta Function and q -Series
    §20.11(iii) Ramanujan’s Change of Base
    This is Jacobi’s inversion problem of §20.9(ii). … A further development on the lines of Nevilles notation (§20.1) is as follows. …
    14: 20.7 Identities
    Also, in further development along the lines of the notations of Neville20.1) and of Glaisher (§22.2), the identities (20.7.6)–(20.7.9) have been recast in a more symmetric manner with respect to suffices 2 , 3 , 4 . …
    §20.7(v) Watson’s Identities
    15: Bibliography
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • G. E. Andrews (1974) Applications of basic hypergeometric functions. SIAM Rev. 16 (4), pp. 441–484.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 16: 10.31 Power Series
    10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
    10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
    17: Bibliography K
  • K. W. J. Kadell (1988) A proof of Askey’s conjectured q -analogue of Selberg’s integral and a conjecture of Morris. SIAM J. Math. Anal. 19 (4), pp. 969–986.
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • D. E. Knuth (1992) Two notes on notation. Amer. Math. Monthly 99 (5), pp. 403–422.
  • K. S. Kölbig (1986) Nielsen’s generalized polylogarithms. SIAM J. Math. Anal. 17 (5), pp. 1232–1258.
  • Koornwinder (website) Tom Koornwinder’s Personal Collection of Maple Procedures
  • 18: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • 19: Bibliography L
  • D. F. Lawden (1989) Elliptic Functions and Applications. Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York.
  • D. H. Lehmer (1943) Ramanujan’s function τ ( n ) . Duke Math. J. 10 (3), pp. 483–492.
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • S. Lewanowicz (1985) Recurrence relations for hypergeometric functions of unit argument. Math. Comp. 45 (172), pp. 521–535.
  • L.-W. Li, T. S. Yeo, P. S. Kooi, and M. S. Leong (1998b) Microwave specific attenuation by oblate spheroidal raindrops: An exact analysis of TCS’s in terms of spheroidal wave functions. J. Electromagn. Waves Appl. 12 (6), pp. 709–711.
  • 20: 26.13 Permutations: Cycle Notation
    𝔖 n denotes the set of permutations of { 1 , 2 , , n } . σ 𝔖 n is a one-to-one and onto mapping from { 1 , 2 , , n } to itself. … The number of elements of 𝔖 n with cycle type ( a 1 , a 2 , , a n ) is given by (26.4.7). … The derangement number, d ( n ) , is the number of elements of 𝔖 n with no fixed points: … Given a permutation σ 𝔖 n , the inversion number of σ , denoted inv ( σ ) , is the least number of adjacent transpositions required to represent σ . …