About the Project

Mellin%20transform

AdvancedHelp

(0.000 seconds)

21—30 of 247 matching pages

21: 12.5 Integral Representations
§12.5(iii) Mellin–Barnes Integrals
12.5.8 U ( a , z ) = e 1 4 z 2 z a 1 2 2 π i Γ ( 1 2 + a ) i i Γ ( t ) Γ ( 1 2 + a 2 t ) 2 t z 2 t d t , a 1 2 , 3 2 , 5 2 , , | ph z | < 3 4 π ,
12.5.9 V ( a , z ) = 2 π e 1 4 z 2 z a 1 2 2 π i Γ ( 1 2 a ) i i Γ ( t ) Γ ( 1 2 a 2 t ) 2 t z 2 t cos ( π t ) d t , a 1 2 , 3 2 , 5 2 , , | ph z | < 1 4 π ,
22: 13.16 Integral Representations
§13.16(iii) Mellin–Barnes Integrals
13.16.10 1 Γ ( 1 + 2 μ ) M κ , μ ( e ± π i z ) = e 1 2 z ± ( 1 2 + μ ) π i 2 π i Γ ( 1 2 + μ κ ) i i Γ ( t κ ) Γ ( 1 2 + μ t ) Γ ( 1 2 + μ + t ) z t d t , | ph z | < 1 2 π ,
13.16.11 W κ , μ ( z ) = e 1 2 z 2 π i i i Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) Γ ( κ t ) Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) z t d t , | ph z | < 3 2 π ,
13.16.12 W κ , μ ( z ) = e 1 2 z 2 π i i i Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) Γ ( 1 κ + t ) z t d t , | ph z | < 1 2 π ,
23: 16.5 Integral Representations and Integrals
16.5.2 F q + 1 p + 1 ( a 0 , , a p b 0 , , b q ; z ) = Γ ( b 0 ) Γ ( a 0 ) Γ ( b 0 a 0 ) 0 1 t a 0 1 ( 1 t ) b 0 a 0 1 F q p ( a 1 , , a p b 1 , , b q ; z t ) d t , b 0 > a 0 > 0 ,
Laplace transforms and inverse Laplace transforms of generalized hypergeometric functions are given in Prudnikov et al. (1992a, §3.38) and Prudnikov et al. (1992b, §3.36). …
24: 11.5 Integral Representations
Mellin–Barnes Integrals
11.5.8 ( 1 2 x ) ν 1 𝐇 ν ( x ) = 1 2 π i i i π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 x 2 ) s d s , x > 0 , ν > 1 ,
11.5.9 ( 1 2 z ) ν 1 𝐋 ν ( z ) = 1 2 π i ( 0 + ) π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 z 2 ) s d s .
25: 35.8 Generalized Hypergeometric Functions of Matrix Argument
Kummer Transformation
Laplace Transform
§35.8(v) Mellin–Barnes Integrals
Multidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. …These multidimensional integrals reduce to the classical Mellin–Barnes integrals (§5.19(ii)) in the special case m = 1 . …
26: 11.7 Integrals and Sums
11.7.10 0 t ν 1 𝐇 ν ( t ) d t = π 2 ν + 1 Γ ( ν + 1 ) , ν > 3 2 ,
11.7.11 0 t μ ν 1 𝐇 ν ( t ) d t = Γ ( 1 2 μ ) 2 μ ν 1 tan ( 1 2 π μ ) Γ ( ν 1 2 μ + 1 ) , | μ | < 1 , ν > μ 3 2 ,
11.7.12 0 t μ ν 𝐇 μ ( t ) 𝐇 ν ( t ) d t = π Γ ( μ + ν ) 2 μ + ν Γ ( μ + ν + 1 2 ) Γ ( μ + 1 2 ) Γ ( ν + 1 2 ) , ( μ + ν ) > 0 .
§11.7(iii) Laplace Transforms
The following Laplace transforms of 𝐇 ν ( t ) require a > 0 for convergence, while those of 𝐋 ν ( t ) require a > 1 . …
27: 20 Theta Functions
Chapter 20 Theta Functions
28: 10.32 Integral Representations
Mellin–Barnes Type
10.32.13 K ν ( z ) = ( 1 2 z ) ν 4 π i c i c + i Γ ( t ) Γ ( t ν ) ( 1 2 z ) 2 t d t , c > max ( ν , 0 ) , | ph z | < 1 2 π .
10.32.14 K ν ( z ) = 1 2 π 2 i ( π 2 z ) 1 2 e z cos ( ν π ) i i Γ ( t ) Γ ( 1 2 t ν ) Γ ( 1 2 t + ν ) ( 2 z ) t d t , ν 1 2 , | ph z | < 3 2 π .
Mellin–Barnes Type
10.32.19 K μ ( z ) K ν ( z ) = 1 8 π i c i c + i Γ ( t + 1 2 μ + 1 2 ν ) Γ ( t + 1 2 μ 1 2 ν ) Γ ( t 1 2 μ + 1 2 ν ) Γ ( t 1 2 μ 1 2 ν ) Γ ( 2 t ) ( 1 2 z ) 2 t d t , c > 1 2 ( | μ | + | ν | ) , | ph z | < 1 2 π .
29: 8.19 Generalized Exponential Integral
8.19.2 E p ( z ) = z p 1 z e t t p d t .
8.19.4 E p ( z ) = z p 1 e z Γ ( p ) 0 t p 1 e z t 1 + t d t , | ph z | < 1 2 π , p > 0 .
Integral representations of Mellin–Barnes type for E p ( z ) follow immediately from (8.6.11), (8.6.12), and (8.19.1). …
30: 13.4 Integral Representations
§13.4(iii) Mellin–Barnes Integrals
13.4.16 𝐌 ( a , b , z ) = 1 2 π i Γ ( a ) i i Γ ( a + t ) Γ ( t ) Γ ( b + t ) z t d t , | ph z | < 1 2 π ,
13.4.17 U ( a , b , z ) = z a 2 π i i i Γ ( a + t ) Γ ( 1 + a b + t ) Γ ( t ) Γ ( a ) Γ ( 1 + a b ) z t d t , | ph z | < 3 2 π ,
13.4.18 U ( a , b , z ) = z 1 b e z 2 π i i i Γ ( b 1 + t ) Γ ( t ) Γ ( a + t ) z t d t , | ph z | < 1 2 π ,