About the Project

Mehler–Dirichlet formula

AdvancedHelp

(0.002 seconds)

11—20 of 257 matching pages

11: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
Solutions are known as conical or Mehler functions. …
14.20.2 𝖰 ^ 1 2 + i τ μ ( x ) = ( e μ π i 𝖰 1 2 + i τ μ ( x ) ) 1 2 π sin ( μ π ) 𝖯 1 2 + i τ μ ( x ) .
14.20.6 P 1 2 + i τ μ ( x ) = i e μ π i sinh ( τ π ) | Γ ( μ + 1 2 + i τ ) | 2 ( Q 1 2 + i τ μ ( x ) Q 1 2 i τ μ ( x ) ) , τ 0 .
§14.20(vi) Generalized Mehler–Fock Transformation
12: 27.11 Asymptotic Formulas: Partial Sums
§27.11 Asymptotic Formulas: Partial Sums
It is more fruitful to study partial sums and seek asymptotic formulas of the form …For example, Dirichlet (1849) proves that for all x 1 , … Equations (27.11.3)–(27.11.11) list further asymptotic formulas related to some of the functions listed in §27.2. …where ( h , k ) = 1 , k > 0 . …
13: 18.18 Sums
§18.18(v) Linearization Formulas
Formula (18.18.27) is known as the Hille–Hardy formula.
Hermite
Formula (18.18.28) is known as the Mehler formula. …
14: 14.1 Special Notation
The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). …
15: 25.2 Definition and Expansions
For further expansions of functions similar to (25.2.1) (Dirichlet series) see §27.4. …
§25.2(iii) Representations by the Euler–Maclaurin Formula
25.2.8 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 s N x x x s + 1 d x , s > 0 , N = 1 , 2 , 3 , .
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
16: 27.10 Periodic Number-Theoretic Functions
Examples are the Dirichlet characters (mod k ) and the greatest common divisor ( n , k ) regarded as a function of n . … Another generalization of Ramanujan’s sum is the Gauss sum G ( n , χ ) associated with a Dirichlet character χ ( mod k ) . It is defined by the relation … For any Dirichlet character χ ( mod k ) , G ( n , χ ) is separable for n if ( n , k ) = 1 , and is separable for every n if and only if G ( n , χ ) = 0 whenever ( n , k ) > 1 . … The finite Fourier expansion of a primitive Dirichlet character χ ( mod k ) has the form …
17: 14.34 Software
§14.34(iv) Conical (Mehler) and/or Toroidal Functions
18: Bibliography J
  • E. Jahnke and F. Emde (1945) Tables of Functions with Formulae and Curves. 4th edition, Dover Publications, New York.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • F. Johansson (2012) Efficient implementation of the Hardy-Ramanujan-Rademacher formula. LMS J. Comput. Math. 15, pp. 341–359.
  • N. Joshi and A. V. Kitaev (2005) The Dirichlet boundary value problem for real solutions of the first Painlevé equation on segments in non-positive semi-axis. J. Reine Angew. Math. 583, pp. 29–86.
  • 19: 18.7 Interrelations and Limit Relations
    See §18.11(ii) for limit formulas of Mehler–Heine type.
    20: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • P. G. L. Dirichlet (1837) Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1837, pp. 45–81 (German).
  • P. G. L. Dirichlet (1849) Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1849, pp. 69–83 (German).
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.