About the Project

Mehler%E2%80%93Heine%20type%20formulas

AdvancedHelp

(0.004 seconds)

1—10 of 358 matching pages

1: 14.31 Other Applications
§14.31(ii) Conical Functions
These functions are also used in the Mehler–Fock integral transform (§14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). The conical functions and Mehler–Fock transform generalize to Jacobi functions and the Jacobi transform; see Koornwinder (1984a) and references therein. …
2: 18.11 Relations to Other Functions
§18.11(i) Explicit Formulas
§18.11(ii) Formulas of MehlerHeine Type
3: Bibliography O
  • F. Oberhettinger and T. P. Higgins (1961) Tables of Lebedev, Mehler and Generalized Mehler Transforms. Mathematical Note Technical Report 246, Boeing Scientific Research Lab, Seattle.
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • A. B. Olde Daalhuis and N. M. Temme (1994) Uniform Airy-type expansions of integrals. SIAM J. Math. Anal. 25 (2), pp. 304–321.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • 4: 14.12 Integral Representations
    §14.12(i) 1 < x < 1
    Mehler–Dirichlet Formula
    Heine’s Integral
    5: 14.20 Conical (or Mehler) Functions
    §14.20 Conical (or Mehler) Functions
    Solutions are known as conical or Mehler functions. …
    14.20.2 𝖰 ^ 1 2 + i τ μ ( x ) = ( e μ π i 𝖰 1 2 + i τ μ ( x ) ) 1 2 π sin ( μ π ) 𝖯 1 2 + i τ μ ( x ) .
    14.20.6 P 1 2 + i τ μ ( x ) = i e μ π i sinh ( τ π ) | Γ ( μ + 1 2 + i τ ) | 2 ( Q 1 2 + i τ μ ( x ) Q 1 2 i τ μ ( x ) ) , τ 0 .
    §14.20(vi) Generalized Mehler–Fock Transformation
    6: 14.1 Special Notation
    The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). …
    7: 18.10 Integral Representations
    §18.10(i) Dirichlet–Mehler-Type Integral Representations
    §18.10(ii) Laplace-Type Integral Representations
    8: Bibliography G
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • D. P. Gupta and M. E. Muldoon (2000) Riccati equations and convolution formulae for functions of Rayleigh type. J. Phys. A 33 (7), pp. 1363–1368.
  • 9: 14.34 Software
    §14.34(iv) Conical (Mehler) and/or Toroidal Functions
    10: 18.18 Sums
    §18.18(v) Linearization Formulas
    §18.18(vi) Bateman-Type Sums
    Jacobi
    Hermite
    Formula (18.18.28) is known as the Mehler formula. …