About the Project

Liouville%E2%80%93Green approximation theorem

AdvancedHelp

(0.002 seconds)

1—10 of 289 matching pages

1: 1.13 Differential Equations
Liouville Transformation
§1.13(viii) Eigenvalues and Eigenfunctions: Sturm-Liouville and Liouville forms
This is the Sturm-Liouville form of a second order differential equation, where denotes d d x . … A regular Sturm-Liouville system will only have solutions for certain (real) values of λ , these are eigenvalues. …
Transformation to Liouville normal Form
2: 27.2 Functions
§27.2(i) Definitions
(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) This result, first proved in Hadamard (1896) and de la Vallée Poussin (1896a, b), is known as the prime number theorem. … If ( a , n ) = 1 , then the Euler–Fermat theorem states that … This is Liouville’s function. …
3: Bibliography D
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster, D. A. Lutz, and R. Schäfke (1993) Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. Roy. Soc. London Ser. A 440, pp. 37–54.
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 4: Bibliography
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I ν ( x ) and J ν ( x ) , x 0 , ν 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • W. O. Amrein, A. M. Hinz, and D. B. Pearson (Eds.) (2005) Sturm-Liouville Theory. Birkhäuser Verlag, Basel.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • M. Aymar, C. H. Greene, and E. Luc-Koenig (1996) Multichannel Rydberg spectroscopy of complex atoms. Reviews of Modern Physics 68, pp. 1015–1123.
  • 5: 2.7 Differential Equations
    §2.7(iii) LiouvilleGreen (WKBJ) Approximation
    For irregular singularities of nonclassifiable rank, a powerful tool for finding the asymptotic behavior of solutions, complete with error bounds, is as follows:
    LiouvilleGreen Approximation Theorem
    By approximatingThe first of these references includes extensions to complex variables and reversions for zeros. …
    6: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • J. G. Taylor (1978) Error bounds for the Liouville-Green approximation to initial-value problems. Z. Angew. Math. Mech. 58 (12), pp. 529–537.
  • J. G. Taylor (1982) Improved error bounds for the Liouville-Green (or WKB) approximation. J. Math. Anal. Appl. 85 (1), pp. 79–89.
  • N. M. Temme and A. B. Olde Daalhuis (1990) Uniform asymptotic approximation of Fermi-Dirac integrals. J. Comput. Appl. Math. 31 (3), pp. 383–387.
  • P.-H. Tseng and T.-C. Lee (1998) Numerical evaluation of exponential integral: Theis well function approximation. Journal of Hydrology 205 (1-2), pp. 38–51.
  • 7: 27.4 Euler Products and Dirichlet Series
    The fundamental theorem of arithmetic is linked to analysis through the concept of the Euler product. …
    27.4.7 n = 1 λ ( n ) n s = ζ ( 2 s ) ζ ( s ) , s > 1 ,
    8: 2.9 Difference Equations
    §2.9(iii) Other Approximations
    For asymptotic approximations to solutions of second-order difference equations analogous to the LiouvilleGreen (WKBJ) approximation for differential equations (§2.7(iii)) see Spigler and Vianello (1992, 1997) and Spigler et al. (1999). …
    9: Bibliography S
  • B. Simon (2005c) Sturm oscillation and comparison theorems. In Sturm-Liouville theory, pp. 29–43.
  • D. R. Smith (1986) Liouville-Green approximations via the Riccati transformation. J. Math. Anal. Appl. 116 (1), pp. 147–165.
  • R. Spigler, M. Vianello, and F. Locatelli (1999) Liouville-Green-Olver approximations for complex difference equations. J. Approx. Theory 96 (2), pp. 301–322.
  • R. Spigler and M. Vianello (1992) Liouville-Green approximations for a class of linear oscillatory difference equations of the second order. J. Comput. Appl. Math. 41 (1-2), pp. 105–116.
  • R. Spigler and M. Vianello (1997) A Survey on the Liouville-Green (WKB) Approximation for Linear Difference Equations of the Second Order. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 567–577.
  • 10: Bibliography E
  • Á. Elbert and A. Laforgia (2000) Further results on McMahon’s asymptotic approximations. J. Phys. A 33 (36), pp. 6333–6341.
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.
  • W. N. Everitt (2005b) Charles Sturm and the development of Sturm-Liouville theory in the years 1900 to 1950. In Sturm-Liouville theory, pp. 45–74.