About the Project

Leibniz formula for derivatives

AdvancedHelp

(0.001 seconds)

31—40 of 414 matching pages

31: 4.20 Derivatives and Differential Equations
§4.20 Derivatives and Differential Equations
4.20.1 d d z sin z = cos z ,
4.20.2 d d z cos z = sin z ,
4.20.3 d d z tan z = sec 2 z ,
4.20.6 d d z cot z = csc 2 z ,
32: 9.2 Differential Equation
9.2.1 d 2 w d z 2 = z w .
§9.2(v) Connection Formulas
9.2.16 d W d z + W 2 = z ,
W = ( 1 / w ) d w / d z , where w is any nontrivial solution of (9.2.1). …
33: 20.7 Identities
§20.7(ii) Addition Formulas
§20.7(iii) Duplication Formula
§20.7(iv) Reduction Formulas for Products
§20.7(vii) Derivatives of Ratios of Theta Functions
§20.7(ix) Addendum to 20.7(iv) Reduction Formulas for Products
34: 4.34 Derivatives and Differential Equations
§4.34 Derivatives and Differential Equations
4.34.7 d 2 w d z 2 a 2 w = 0 ,
4.34.8 ( d w d z ) 2 a 2 w 2 = 1 ,
4.34.9 ( d w d z ) 2 a 2 w 2 = 1 ,
4.34.10 d w d z + a 2 w 2 = 1 ,
35: 4.7 Derivatives and Differential Equations
§4.7 Derivatives and Differential Equations
§4.7(i) Logarithms
4.7.1 d d z ln z = 1 z ,
4.7.5 d w d z = f ( z ) f ( z )
§4.7(ii) Exponentials and Powers
36: 22.13 Derivatives and Differential Equations
§22.13 Derivatives and Differential Equations
§22.13(i) Derivatives
Table 22.13.1: Derivatives of Jacobian elliptic functions with respect to variable.
d d z ( sn z ) = cn z dn z d d z ( dc z )  = k 2 sc z nc z
Note that each derivative in Table 22.13.1 is a constant multiple of the product of the corresponding copolar functions. …
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
37: 25.2 Definition and Expansions
25.2.5 γ n = lim m ( k = 1 m ( ln k ) n k ( ln m ) n + 1 n + 1 ) .
§25.2(iii) Representations by the Euler–Maclaurin Formula
25.2.8 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 s N x x x s + 1 d x , s > 0 , N = 1 , 2 , 3 , .
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
38: 4.13 Lambert W -Function
4.13.4 d W d z = e W 1 + W = W z ( 1 + W ) .
4.13.4_1 d n W d z n = e n W p n 1 ( W ) ( 1 + W ) 2 n 1 , n = 1 , 2 , 3 , ,
4.13.5_1 ( W 0 ( z ) z ) a = e a W 0 ( z ) = n = 0 a ( n + a ) n 1 n ! ( z ) n , | z | < e 1 , a .
4.13.5_2 1 1 + W 0 ( z ) = n = 0 n n n ! z n , | z | < e 1 .
4.13.9_1 W 0 ( z ) = n = 0 d n ( e z + 1 ) n / 2 , | e z + 1 | < 1 , | ph ( z + e 1 ) | < π ,
39: 15.11 Riemann’s Differential Equation
15.11.1 d 2 w d z 2 + ( 1 a 1 a 2 z α + 1 b 1 b 2 z β + 1 c 1 c 2 z γ ) d w d z + ( ( α β ) ( α γ ) a 1 a 2 z α + ( β α ) ( β γ ) b 1 b 2 z β + ( γ α ) ( γ β ) c 1 c 2 z γ ) w ( z α ) ( z β ) ( z γ ) = 0 ,
§15.11(ii) Transformation Formulas
40: 7.18 Repeated Integrals of the Complementary Error Function
§7.18(iii) Properties
7.18.3 d d z i n erfc ( z ) = i n 1 erfc ( z ) , n = 0 , 1 , 2 , ,
7.18.4 d n d z n ( e z 2 erfc z ) = ( 1 ) n 2 n n ! e z 2 i n erfc ( z ) , n = 0 , 1 , 2 , .
7.18.5 d 2 W d z 2 + 2 z d W d z 2 n W = 0 , W ( z ) = A i n erfc ( z ) + B i n erfc ( z ) ,
The confluent hypergeometric function on the right-hand side of (7.18.10) is multivalued and in the sectors 1 2 π < | ph z | < π one has to use the analytic continuation formula (13.2.12). …