About the Project

Legendre symbol

AdvancedHelp

(0.002 seconds)

21—30 of 41 matching pages

21: Bibliography S
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • 22: 14.15 Uniform Asymptotic Approximations
    14.15.1 𝖯 ν μ ( ± x ) = ( 1 x 1 ± x ) μ / 2 ( j = 0 J 1 ( ν + 1 ) j ( ν ) j j ! Γ ( j + 1 + μ ) ( 1 x 2 ) j + O ( 1 Γ ( J + 1 + μ ) ) )
    23: 18.11 Relations to Other Functions
    18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .
    24: Bibliography G
  • F. G. Garvan and M. E. H. Ismail (Eds.) (2001) Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Developments in Mathematics, Vol. 4, Kluwer Academic Publishers, Dordrecht.
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • A. Gervois and H. Navelet (1985a) Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 26 (4), pp. 633–644.
  • A. Gervois and H. Navelet (1985b) Integrals of three Bessel functions and Legendre functions. II. J. Math. Phys. 26 (4), pp. 645–655.
  • J. N. Ginocchio (1991) A new identity for some six- j symbols. J. Math. Phys. 32 (6), pp. 1430–1432.
  • 25: 10.54 Integral Representations
    𝗁 n ( 1 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t ,
    For the Legendre polynomial P n and the associated Legendre function Q n see §§18.3 and 14.21(i), with μ = 0 and ν = n . …
    26: 10.60 Sums
    Then with P n again denoting the Legendre polynomial of degree n ,
    10.60.1 cos w w = n = 0 ( 2 n + 1 ) 𝗃 n ( v ) 𝗒 n ( u ) P n ( cos α ) , | v e ± i α | < | u | .
    10.60.2 sin w w = n = 0 ( 2 n + 1 ) 𝗃 n ( v ) 𝗃 n ( u ) P n ( cos α ) .
    10.60.7 e i z cos α = n = 0 ( 2 n + 1 ) i n 𝗃 n ( z ) P n ( cos α ) ,
    10.60.8 e z cos α = n = 0 ( 2 n + 1 ) 𝗂 n ( 1 ) ( z ) P n ( cos α ) ,
    27: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • REDUCE (free interactive system)
  • L. Robin (1957) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I. Gauthier-Villars, Paris.
  • L. Robin (1958) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II. Gauthier-Villars, Paris.
  • C. C. J. Roothaan and S. Lai (1997) Calculation of 3 n - j symbols by Labarthe’s method. International Journal of Quantum Chemistry 63 (1), pp. 57–64.
  • 28: 18.12 Generating Functions
    The z -radii of convergence will depend on x , and in first instance we will assume x [ 1 , 1 ] for Jacobi, ultraspherical, Chebyshev and Legendre, x [ 0 , ) for Laguerre, and x for Hermite. …
    Legendre
    18.12.11 1 1 2 x z + z 2 = n = 0 P n ( x ) z n , | z | < 1 .
    18.12.12 e x z J 0 ( z 1 x 2 ) = n = 0 P n ( x ) n ! z n .
    18.12.14 Γ ( α + 1 ) ( x z ) 1 2 α e z J α ( 2 x z ) = n = 0 L n ( α ) ( x ) ( α + 1 ) n z n .
    29: 18.30 Associated OP’s
    §18.30(ii) Associated Legendre Polynomials
    18.30.6 P n ( x ; c ) = P n ( 0 , 0 ) ( x ; c ) , n = 0 , 1 , .
    18.30.7 P n ( x ; c ) = = 0 n c + c P ( x ) P n ( x ) ,
    in which P n ( x ) are the Legendre polynomials of Table 18.3.1. For further results on associated Legendre polynomials see Chihara (1978, Chapter VI, §12). …
    30: Software Index