About the Project

Lebesgue%20constants

AdvancedHelp

(0.002 seconds)

11—20 of 499 matching pages

11: 5.22 Tables
Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. Zhang and Jin (1996, pp. 67–69 and 72) tabulates Γ ( x ) , 1 / Γ ( x ) , Γ ( x ) , ln Γ ( x ) , ψ ( x ) , ψ ( x ) , ψ ( x ) , and ψ ( x ) for x = 0 ( .1 ) 5 to 8D or 8S; Γ ( n + 1 ) for n = 0 ( 1 ) 100 ( 10 ) 250 ( 50 ) 500 ( 100 ) 3000 to 51S. … Abramov (1960) tabulates ln Γ ( x + i y ) for x = 1 ( .01 ) 2 , y = 0 ( .01 ) 4 to 6D. Abramowitz and Stegun (1964, Chapter 6) tabulates ln Γ ( x + i y ) for x = 1 ( .1 ) 2 , y = 0 ( .1 ) 10 to 12D. …Zhang and Jin (1996, pp. 70, 71, and 73) tabulates the real and imaginary parts of Γ ( x + i y ) , ln Γ ( x + i y ) , and ψ ( x + i y ) for x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 to 8S.
12: 18.2 General Orthogonal Polynomials
More generally than (18.2.1)–(18.2.3), w ( x ) d x may be replaced in (18.2.1) by d μ ( x ) , where the measure μ is the Lebesgue–Stieltjes measure μ α corresponding to a bounded nondecreasing function α on the closure of ( a , b ) with an infinite number of points of increase, and such that a b | x | n d μ ( x ) < for all n . …
§18.2(iii) Standardization and Related Constants
Constants
(i) the traditional OP standardizations of Table 18.3.1, where each is defined in terms of the above constants. … , of the form w ( x ) d x ) nor is it necessarily unique, up to a positive constant factor. …
13: 2.4 Contour Integrals
Then … … Then the Laplace transform …where σ ( c ) is a constant. … If this integral converges uniformly at each limit for all sufficiently large t , then by the Riemann–Lebesgue lemma (§1.8(i)) …
14: 18.18 Sums
18.18.1 a n = n ! ( 2 n + α + β + 1 ) Γ ( n + α + β + 1 ) 2 α + β + 1 Γ ( n + α + 1 ) Γ ( n + β + 1 ) 1 1 f ( x ) P n ( α , β ) ( x ) ( 1 x ) α ( 1 + x ) β d x .
Expansion of L 2 functions
In all three cases of Jacobi, Laguerre and Hermite, if f ( x ) is L 2 on the corresponding interval with respect to the corresponding weight function and if a n , b n , d n are given by (18.18.1), (18.18.5), (18.18.7), respectively, then the respective series expansions (18.18.2), (18.18.4), (18.18.6) are valid with the sums converging in L 2 sense. … See Andrews et al. (1999, Lemma 7.1.1) for the more general expansion of P n ( γ , δ ) ( x ) in terms of P n ( α , β ) ( x ) . …
15: 1.16 Distributions
where α 1 and α 2 are real or complex constants. … , a function f on I which is absolutely Lebesgue integrable on every compact subset of I ) such that …More generally, for α : [ a , b ] [ , ] a nondecreasing function the corresponding Lebesgue–Stieltjes measure μ α (see §1.4(v)) can be considered as a distribution: … where c is a constant. … Since δ x 0 is the Lebesgue–Stieltjes measure μ α corresponding to α ( x ) = H ( x x 0 ) (see §1.4(v)), formula (1.16.16) is a special case of (1.16.3_5), (1.16.9_5) for that choice of α . …
16: 25.12 Polylogarithms
See accompanying text
Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
25.12.11 Li s ( z ) z Γ ( s ) 0 x s 1 e x z d x ,
25.12.14 F s ( x ) = 1 Γ ( s + 1 ) 0 t s e t x + 1 d t , s > 1 ,
Sometimes the factor 1 / Γ ( s + 1 ) is omitted. …
17: 2.10 Sums and Sequences
Formula (2.10.2) is useful for evaluating the constant term in expansions obtained from (2.10.1). …where γ is Euler’s constant5.2(ii)) and ζ is the derivative of the Riemann zeta function (§25.2(i)). e C is sometimes called Glaisher’s constant. … where α ( 1 ) is a real constant, and … Hence by the Riemann–Lebesgue lemma (§1.8(i)) …
18: 32.8 Rational Solutions
with κ , λ , and μ arbitrary constants. In the general case assume γ δ 0 , so that as in §32.2(ii) we may set γ = 1 and δ = 1 . … with κ and μ arbitrary constants. …
  • (c)

    α = 1 2 a 2 , β = 1 2 ( a + n ) 2 , and γ = m , with m + n even.

  • with κ and μ arbitrary constants. …
    19: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 20: 30.9 Asymptotic Approximations and Expansions
    §30.9(i) Prolate Spheroidal Wave Functions
    As γ 2 + , with q = 2 ( n m ) + 1 , … The asymptotic behavior of λ n m ( γ 2 ) and a n , k m ( γ 2 ) as n in descending powers of 2 n + 1 is derived in Meixner (1944). …The asymptotic behavior of 𝖯𝗌 n m ( x , γ 2 ) and 𝖰𝗌 n m ( x , γ 2 ) as x ± 1 is given in Erdélyi et al. (1955, p. 151). The behavior of λ n m ( γ 2 ) for complex γ 2 and large | λ n m ( γ 2 ) | is investigated in Hunter and Guerrieri (1982). …