About the Project

Laplace transform with respect to lattice parameter

AdvancedHelp

(0.003 seconds)

21—30 of 910 matching pages

21: 13.10 Integrals
§13.10(ii) Laplace Transforms
For additional Laplace transforms see Erdélyi et al. (1954a, §§4.22, 5.20), Oberhettinger and Badii (1973, §1.17), and Prudnikov et al. (1992a, §§3.34, 3.35). Inverse Laplace transforms are given in Oberhettinger and Badii (1973, §2.16) and Prudnikov et al. (1992b, §§3.33, 3.34).
§13.10(iii) Mellin Transforms
§13.10(iv) Fourier Transforms
22: Bibliography D
  • B. Davies (1984) Integral Transforms and their Applications. 2nd edition, Applied Mathematical Sciences, Vol. 25, Springer-Verlag, New York.
  • L. Debnath and D. Bhatta (2015) Integral transforms and their applications. Third edition, CRC Press, Boca Raton, FL.
  • P. Deift, T. Kriecherbauer, K. T. McLaughlin, S. Venakides, and X. Zhou (1999a) Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52 (12), pp. 1491–1552.
  • P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou (1999b) Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (11), pp. 1335–1425.
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • 23: 24.13 Integrals
    §24.13(iii) Compendia
    For Laplace and inverse Laplace transforms see Prudnikov et al. (1992a, §§3.28.1–3.28.2) and Prudnikov et al. (1992b, §§3.26.1–3.26.2). …
    24: 12.16 Mathematical Applications
    PCFs are also used in integral transforms with respect to the parameter, and inversion formulas exist for kernels containing PCFs. …Integral transforms and sampling expansions are considered in Jerri (1982).
    25: 18.17 Integrals
    §18.17(vi) Laplace Transforms
    Many of the Fourier transforms given in §18.17(v) have analytic continuations to Laplace transforms. …
    Jacobi
    Laguerre
    Hermite
    26: 10.73 Physical Applications
    Bessel functions of the first kind, J n ( x ) , arise naturally in applications having cylindrical symmetry in which the physics is described either by Laplace’s equation 2 V = 0 , or by the Helmholtz equation ( 2 + k 2 ) ψ = 0 . Laplace’s equation governs problems in heat conduction, in the distribution of potential in an electrostatic field, and in hydrodynamics in the irrotational motion of an incompressible fluid. … … The analysis of the current distribution in circular conductors leads to the Kelvin functions ber x , bei x , ker x , and kei x . …
    27: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • R. S. Strichartz (1994) A Guide to Distribution Theory and Fourier Transforms. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL.
  • 28: 7.7 Integral Representations
    7.7.4 0 e a t t + z 2 d t = π a e a z 2 erfc ( a z ) , a > 0 , z > 0 .
    7.7.13 f ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 s ) d s ,
    7.7.14 g ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 s ) d s .
    7.7.15 0 e a t cos ( t 2 ) d t = π 2 f ( a 2 π ) , a > 0 ,
    7.7.16 0 e a t sin ( t 2 ) d t = π 2 g ( a 2 π ) , a > 0 .
    29: 16.15 Integral Representations and Integrals
    16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
    16.15.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β ) Γ ( γ β ) 0 1 0 1 u β 1 v β 1 ( 1 u ) γ β 1 ( 1 v ) γ β 1 ( 1 u x v y ) α d u d v , γ > β > 0 , γ > β > 0 ,
    These representations can be used to derive analytic continuations of the Appell functions, including convergent series expansions for large x , large y , or both. For inverse Laplace transforms of Appell functions see Prudnikov et al. (1992b, §3.40).
    30: 8.19 Generalized Exponential Integral
    §8.19(i) Definition and Integral Representations
    8.19.2 E p ( z ) = z p 1 z e t t p d t .
    In Figures 8.19.28.19.5, height corresponds to the absolute value of the function and color to the phase. …
    §8.19(vi) Relation to Confluent Hypergeometric Function