About the Project

Lambert%20W-function

AdvancedHelp

(0.005 seconds)

11—20 of 113 matching pages

11: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • T. C. Scott, G. Fee, J. Grotendorst, and W. Z. Zhang (2014) Numerics of the generalized Lambert W function. ACM Commun. Comput. Algebra 48 (2), pp. 42–56.
  • T. C. Scott, G. Fee, and J. Grotendorst (2013) Asymptotic series of generalized Lambert W function. ACM Commun. Comput. Algebra 47 (3), pp. 75–83.
  • T. C. Scott, R. Mann, and R. E. Martinez (2006) General relativity and quantum mechanics: towards a generalization of the Lambert W function: a generalization of the Lambert W function. Appl. Algebra Engrg. Comm. Comput. 17 (1), pp. 41–47.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • 12: Bibliography C
  • F. Chapeau-Blondeau and A. Monir (2002) Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50 (9), pp. 2160–2165.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth (1996) On the Lambert W function. Adv. Comput. Math. 5 (4), pp. 329–359.
  • R. M. Corless, D. J. Jeffrey, and D. E. Knuth (1997) A sequence of series for the Lambert W function. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pp. 197–204.
  • 13: Software Index
    14: 25.18 Methods of Computation
    For dilogarithms and polylogarithms see Jacobs and Lambert (1972), Osácar et al. (1995), Spanier and Oldham (1987, pp. 231–232), and Zudilin (2007). …
    15: Errata
  • Expansion

    §4.13 has been enlarged. The Lambert W -function is multi-valued and we use the notation W k ( x ) , k , for the branches. The original two solutions are identified via Wp ( x ) = W 0 ( x ) and Wm ( x ) = W ± 1 ( x 0 i ) .

    Other changes are the introduction of the Wright ω -function and tree T -function in (4.13.1_2) and (4.13.1_3), simplification formulas (4.13.3_1) and (4.13.3_2), explicit representation (4.13.4_1) for d n W d z n , additional Maclaurin series (4.13.5_1) and (4.13.5_2), an explicit expansion about the branch point at z = e 1 in (4.13.9_1), extending the number of terms in asymptotic expansions (4.13.10) and (4.13.11), and including several integrals and integral representations for Lambert W -functions in the end of the section.

  • Equation (4.13.11)
    4.13.11 Wm ( x ) = η ln η ln η η + ( ln η ) 2 2 η 2 ln η η 2 + O ( ( ln η ) 3 η 3 )

    Originally the sign in front of ( ln η ) 2 2 η 2 was . The correct sign is + .

  • Subsection 26.7(iv)

    In the final line of this subsection, Wm ( n ) was replaced by Wp ( n ) twice, and the wording was changed from “or, equivalently, N = e Wm ( n ) ” to “or, specifically, N = e Wp ( n ) ”.

    Reported by Gergő Nemes on 2018-04-09

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 16: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • I. Mező (2020) An integral representation for the Lambert W function.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 17: Bibliography J
  • D. Jacobs and F. Lambert (1972) On the numerical calculation of polylogarithms. Nordisk Tidskr. Informationsbehandling (BIT) 12 (4), pp. 581–585.
  • D. J. Jeffrey and N. Murdoch (2017) Stirling Numbers, Lambert W and the Gamma Function. In Mathematical Aspects of Computer and Information Sciences, J. Blömer, I. S. Kotsireas, T. Kutsia, and D. E. Simos (Eds.), Cham, pp. 275–279.
  • 18: DLMF Project News
    error generating summary
    19: 8 Incomplete Gamma and Related
    Functions
    Chapter 8 Incomplete Gamma and Related Functions
    20: 28 Mathieu Functions and Hill’s Equation
    Chapter 28 Mathieu Functions and Hill’s Equation