About the Project

Lamé equation

AdvancedHelp

(0.003 seconds)

21—30 of 39 matching pages

21: 28.34 Methods of Computation
  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • 22: 29.20 Methods of Computation
    The eigenvalues a ν m ( k 2 ) , b ν m ( k 2 ) , and the Lamé functions 𝐸𝑐 ν m ( z , k 2 ) , 𝐸𝑠 ν m ( z , k 2 ) , can be calculated by direct numerical methods applied to the differential equation (29.2.1); see §3.7. … Zeros of Lamé polynomials can be computed by solving the system of equations (29.12.13) by employing Newton’s method; see §3.8(ii). …
    23: Bibliography
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • F. M. Arscott (1964b) Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions. International Series of Monographs in Pure and Applied Mathematics, Vol. 66, Pergamon Press, The Macmillan Co., New York.
  • 24: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • 25: 31.18 Methods of Computation
    The computation of the accessory parameter for the Heun functions is carried out via the continued-fraction equations (31.4.2) and (31.11.13) in the same way as for the Mathieu, Lamé, and spheroidal wave functions in Chapters 2830.
    26: Bibliography S
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • 27: Bibliography R
  • G. M. Roper (1951) Some Applications of the Lamé Function Solutions of the Linearised Supersonic Flow Equations. Technical Reports and Memoranda Technical Report 2865, Aeronautical Research Council (Great Britain).
  • 28: 29.21 Tables
  • Arscott and Khabaza (1962) tabulates the coefficients of the polynomials P in Table 29.12.1 (normalized so that the numerically largest coefficient is unity, i.e. monic polynomials), and the corresponding eigenvalues h for k 2 = 0.1 ( .1 ) 0.9 , n = 1 ( 1 ) 30 . Equations from §29.6 can be used to transform to the normalization adopted in this chapter. Precision is 6S.

  • 29: Hans Volkmer
    Volkmer has published numerous papers on special functions, spectral theory, differential equations, and mathematical statistics. …
  • 30: Bibliography E
  • A. Erdélyi (1941b) On Lamé functions. Philos. Mag. (7) 31, pp. 123–130.
  • A. Erdélyi (1941c) On algebraic Lamé functions. Philos. Mag. (7) 32, pp. 348–350.
  • A. Erdélyi (1942a) Integral equations for Heun functions. Quart. J. Math., Oxford Ser. 13, pp. 107–112.
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.