About the Project

L orthornormal basis

AdvancedHelp

(0.001 seconds)

21—30 of 113 matching pages

21: 11.4 Basic Properties
β–Ί
11.4.4 𝐋 n 1 2 ⁑ ( z ) = I n + 1 2 ⁑ ( z ) .
β–Ί
11.4.29 d d z ⁑ ( z Ξ½ ⁒ 𝐋 Ξ½ ⁑ ( z ) ) = z Ξ½ ⁒ 𝐋 Ξ½ 1 ⁑ ( z ) ,
β–Ίwhere β„‹ Ξ½ ⁑ ( z ) denotes either 𝐇 Ξ½ ⁑ ( z ) or 𝐋 Ξ½ ⁑ ( z ) . … β–Ί
𝐋 0 ⁑ ( z ) = 2 Ο€ + 𝐋 1 ⁑ ( z ) ,
β–Ί
d d z ⁑ ( z ⁒ 𝐋 1 ⁑ ( z ) ) = z ⁒ 𝐋 0 ⁑ ( z ) .
22: 25.19 Tables
β–Ί
  • Cloutman (1989) tabulates Ξ“ ⁑ ( s + 1 ) ⁒ F s ⁑ ( x ) , where F s ⁑ ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ⁒ ( .05 ) ⁒ 25 , to 12S.

  • β–Ί
  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ΞΆ ⁑ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ΞΆ ⁑ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 23: 23.1 Special Notation
    β–Ί β–Ίβ–Ί
    𝕃 lattice in β„‚ .
    β–ΊThe main functions treated in this chapter are the Weierstrass -function ⁑ ( z ) = ⁑ ( z | 𝕃 ) = ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass zeta function ΞΆ ⁑ ( z ) = ΞΆ ⁑ ( z | 𝕃 ) = ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass sigma function Οƒ ⁑ ( z ) = Οƒ ⁑ ( z | 𝕃 ) = Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the elliptic modular function Ξ» ⁑ ( Ο„ ) ; Klein’s complete invariant J ⁑ ( Ο„ ) ; Dedekind’s eta function Ξ· ⁑ ( Ο„ ) . …
    24: 25.1 Special Notation
    β–ΊThe main related functions are the Hurwitz zeta function ΞΆ ⁑ ( s , a ) , the dilogarithm Li 2 ⁑ ( z ) , the polylogarithm Li s ⁑ ( z ) (also known as Jonquière’s function Ο• ⁑ ( z , s ) ), Lerch’s transcendent Ξ¦ ⁑ ( z , s , a ) , and the Dirichlet L -functions L ⁑ ( s , Ο‡ ) .
    25: 18.14 Inequalities
    β–Ί
    18.14.8 e 1 2 ⁒ x ⁒ | L n ( α ) ⁑ ( x ) | L n ( α ) ⁑ ( 0 ) = ( α + 1 ) n n ! , 0 x < , α 0 .
    β–Ί
    18.14.12 ( L n ( α ) ⁑ ( x ) ) 2 L n 1 ( α ) ⁑ ( x ) ⁒ L n + 1 ( α ) ⁑ ( x ) , 0 x < , α 0 .
    β–ΊLet the maxima x n , m , m = 0 , 1 , , n 1 , of | L n ( Ξ± ) ⁑ ( x ) | in [ 0 , ) be arranged so that … β–Ί
    | L n ( Ξ± ) ⁑ ( x n , 0 ) | > | L n ( Ξ± ) ⁑ ( x n , 1 ) | > β‹― > | L n ( Ξ± ) ⁑ ( x n , m ) | ,
    β–Ί
    18.14.24 | L n ( Ξ± ) ⁑ ( x n , 0 ) | < | L n ( Ξ± ) ⁑ ( x n , 1 ) | < β‹― < | L n ( Ξ± ) ⁑ ( x n , n 1 ) | .
    26: 18.18 Sums
    β–Ί
    Expansion of L 2 functions
    β–ΊIn all three cases of Jacobi, Laguerre and Hermite, if f ⁑ ( x ) is L 2 on the corresponding interval with respect to the corresponding weight function and if a n , b n , d n are given by (18.18.1), (18.18.5), (18.18.7), respectively, then the respective series expansions (18.18.2), (18.18.4), (18.18.6) are valid with the sums converging in L 2 sense. … β–Ί
    18.18.10 L n ( Ξ± 1 + β‹― + Ξ± r + r 1 ) ⁑ ( x 1 + β‹― + x r ) = m 1 + β‹― + m r = n L m 1 ( Ξ± 1 ) ⁑ ( x 1 ) ⁒ β‹― ⁒ L m r ( Ξ± r ) ⁑ ( x r ) .
    β–Ί
    18.18.12 L n ( Ξ± ) ⁑ ( Ξ» ⁒ x ) L n ( Ξ± ) ⁑ ( 0 ) = β„“ = 0 n ( n β„“ ) ⁒ Ξ» β„“ ⁒ ( 1 Ξ» ) n β„“ ⁒ L β„“ ( Ξ± ) ⁑ ( x ) L β„“ ( Ξ± ) ⁑ ( 0 ) .
    β–Ί
    18.18.37 β„“ = 0 n L β„“ ( Ξ± ) ⁑ ( x ) = L n ( Ξ± + 1 ) ⁑ ( x ) ,
    27: 23.6 Relations to Other Functions
    β–ΊIn this subsection 2 ⁒ Ο‰ 1 , 2 ⁒ Ο‰ 3 are any pair of generators of the lattice 𝕃 , and the lattice roots e 1 ⁑ , e 2 ⁑ , e 3 ⁑ are given by (23.3.9). … β–ΊAgain, in Equations (23.6.16)–(23.6.26), 2 ⁒ Ο‰ 1 , 2 ⁒ Ο‰ 3 are any pair of generators of the lattice 𝕃 and e 1 ⁑ , e 2 ⁑ , e 3 ⁑ are given by (23.3.9). … β–ΊAlso, 𝕃 1 , 𝕃 2 , 𝕃 3 are the lattices with generators ( 4 ⁒ K ⁑ , 2 ⁒ i ⁒ K ⁑ ) , ( 2 ⁒ K ⁑ 2 ⁒ i ⁒ K ⁑ , 2 ⁒ K ⁑ + 2 ⁒ i ⁒ K ⁑ ) , ( 2 ⁒ K ⁑ , 4 ⁒ i ⁒ K ⁑ ) , respectively. β–Ί
    23.6.27 ΞΆ ⁑ ( z | 𝕃 1 ) ΞΆ ⁑ ( z + 2 ⁒ K ⁑ | 𝕃 1 ) + ΞΆ ⁑ ( 2 ⁒ K ⁑ | 𝕃 1 ) = ns ⁑ ( z , k ) ,
    β–Ί
    23.6.28 ΞΆ ⁑ ( z | 𝕃 2 ) ΞΆ ⁑ ( z + 2 ⁒ K ⁑ | 𝕃 2 ) + ΞΆ ⁑ ( 2 ⁒ K ⁑ | 𝕃 2 ) = ds ⁑ ( z , k ) ,
    28: 23.11 Integral Representations
    β–Ί
    23.11.2 ⁑ ( z ) = 1 z 2 + 8 ⁒ 0 s ⁒ ( e s ⁒ sinh 2 ⁑ ( 1 2 ⁒ z ⁒ s ) ⁒ f 1 ⁑ ( s , Ο„ ) + e i ⁒ Ο„ ⁒ s ⁒ sin 2 ⁑ ( 1 2 ⁒ z ⁒ s ) ⁒ f 2 ⁑ ( s , Ο„ ) ) ⁒ d s ,
    β–Ί
    23.11.3 ΞΆ ⁑ ( z ) = 1 z + 0 ( e s ⁒ ( z ⁒ s sinh ⁑ ( z ⁒ s ) ) ⁒ f 1 ⁑ ( s , Ο„ ) e i ⁒ Ο„ ⁒ s ⁒ ( z ⁒ s sin ⁑ ( z ⁒ s ) ) ⁒ f 2 ⁑ ( s , Ο„ ) ) ⁒ d s ,
    29: 23.12 Asymptotic Approximations
    β–Ί
    23.12.1 ⁑ ( z ) = Ο€ 2 4 ⁒ Ο‰ 1 2 ⁒ ( 1 3 + csc 2 ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) + 8 ⁒ ( 1 cos ⁑ ( Ο€ ⁒ z Ο‰ 1 ) ) ⁒ q 2 + O ⁑ ( q 4 ) ) ,
    β–Ί
    23.12.2 ΞΆ ⁑ ( z ) = Ο€ 2 4 ⁒ Ο‰ 1 2 ⁒ ( z 3 + 2 ⁒ Ο‰ 1 Ο€ ⁒ cot ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) 8 ⁒ ( z Ο‰ 1 Ο€ ⁒ sin ⁑ ( Ο€ ⁒ z Ο‰ 1 ) ) ⁒ q 2 + O ⁑ ( q 4 ) ) ,
    β–Ί
    23.12.3 Οƒ ⁑ ( z ) = 2 ⁒ Ο‰ 1 Ο€ ⁒ exp ⁑ ( Ο€ 2 ⁒ z 2 24 ⁒ Ο‰ 1 2 ) ⁒ sin ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) ⁒ ( 1 ( Ο€ 2 ⁒ z 2 Ο‰ 1 2 4 ⁒ sin 2 ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) ) ⁒ q 2 + O ⁑ ( q 4 ) ) ,
    β–Ίprovided that z 𝕃 in the case of (23.12.1) and (23.12.2). …
    30: 18.6 Symmetry, Special Values, and Limits to Monomials
    β–Ί
    18.6.1 L n ( α ) ⁑ ( 0 ) = ( α + 1 ) n n ! .
    β–Ί
    18.6.5 lim α L n ( α ) ⁑ ( α ⁒ x ) L n ( α ) ⁑ ( 0 ) = ( 1 x ) n .