About the Project

Jacobi transform

AdvancedHelp

(0.002 seconds)

21—30 of 39 matching pages

21: Bibliography W
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • D. V. Widder (1979) The Airy transform. Amer. Math. Monthly 86 (4), pp. 271–277.
  • D. V. Widder (1941) The Laplace Transform. Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, NJ.
  • J. Wimp (1964) A class of integral transforms. Proc. Edinburgh Math. Soc. (2) 14, pp. 33–40.
  • 22: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • S. M. Candel (1981) An algorithm for the Fourier-Bessel transform. Comput. Phys. Comm. 23 (4), pp. 343–353.
  • B. C. Carlson (1976) Quadratic transformations of Appell functions. SIAM J. Math. Anal. 7 (2), pp. 291–304.
  • N. B. Christensen (1990) Optimized fast Hankel transform filters. Geophysical Prospecting 38 (5), pp. 545–568.
  • P. Cornille (1972) Computation of Hankel transforms. SIAM Rev. 14 (2), pp. 278–285.
  • 23: Bibliography F
  • J. Faraut (1982) Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un. J. Funct. Anal. 49 (2), pp. 230–268.
  • H. E. Fettis (1965) Calculation of elliptic integrals of the third kind by means of Gauss’ transformation. Math. Comp. 19 (89), pp. 97–104.
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • 24: 18.3 Definitions
    §18.3 Definitions
    The classical OP’s comprise the Jacobi, Laguerre and Hermite polynomials. … For finite power series of the Jacobi, ultraspherical, Laguerre, and Hermite polynomials, see §18.5(iii) (in powers of x 1 for Jacobi polynomials, in powers of x for the other cases). … It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …
    Jacobi on Other Intervals
    25: 22.17 Moduli Outside the Interval [0,1]
    22.17.1 p q ( z , k ) = p q ( z , k ) ,
    22.17.3 cn ( z , 1 / k ) = dn ( z / k , k ) ,
    22.17.4 dn ( z , 1 / k ) = cn ( z / k , k ) .
    §22.17(ii) Complex Moduli
    In particular, the Landen transformations in §§22.7(i) and 22.7(ii) are valid for all complex values of k , irrespective of which values of k and k = 1 k 2 are chosen—as long as they are used consistently. …
    26: 31.7 Relations to Other Functions
    They are analogous to quadratic and cubic hypergeometric transformations (§§15.8(iii)15.8(v)). … Joyce (1994) gives a reduction in which the independent variable is transformed not polynomially or rationally, but algebraically. … With z = sn 2 ( ζ , k ) and …The solutions (31.3.1) and (31.3.5) transform into even and odd solutions of Lamé’s equation, respectively. …
    27: Errata
    We have also incorporated material on continuous q -Jacobi polynomials, and several new limit transitions. …
  • Section 1.14

    There have been extensive changes in the notation used for the integral transforms defined in §1.14. These changes are applied throughout the DLMF. The following table summarizes the changes.

    Transform New Abbreviated Old
    Notation Notation Notation
    Fourier ( f ) ( x ) f ( x )
    Fourier Cosine c ( f ) ( x ) c f ( x )
    Fourier Sine s ( f ) ( x ) s f ( x )
    Laplace ( f ) ( s ) f ( s ) ( f ( t ) ; s )
    Mellin ( f ) ( s ) f ( s ) ( f ; s )
    Hilbert ( f ) ( s ) f ( s ) ( f ; s )
    Stieltjes 𝒮 ( f ) ( s ) 𝒮 f ( s ) 𝒮 ( f ; s )

    Previously, for the Fourier, Fourier cosine and Fourier sine transforms, either temporary local notations were used or the Fourier integrals were written out explicitly.

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • Equation (22.6.7)
    22.6.7 dn ( 2 z , k ) = dn 2 ( z , k ) k 2 sn 2 ( z , k ) cn 2 ( z , k ) 1 k 2 sn 4 ( z , k ) = dn 4 ( z , k ) + k 2 k 2 sn 4 ( z , k ) 1 k 2 sn 4 ( z , k )

    Originally the term k 2 sn 2 ( z , k ) cn 2 ( z , k ) was given incorrectly as k 2 sn 2 ( z , k ) dn 2 ( z , k ) .

    Reported 2014-02-28 by Svante Janson.

  • Table 22.5.4

    Originally the limiting form for sc ( z , k ) in the last line of this table was incorrect ( cosh z , instead of sinh z ).

    sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
    cn ( z , k ) sech z sd ( z , k ) sinh z nc ( z , k ) cosh z ds ( z , k ) csch z
    dn ( z , k ) sech z nd ( z , k ) cosh z sc ( z , k ) sinh z cs ( z , k ) csch z

    Reported 2010-11-23.

  • 28: 22.15 Inverse Functions
    are denoted respectively by
    ξ = arcsn ( x , k ) ,
    η = arccn ( x , k ) ,
    Equations (22.15.1) and (22.15.4), for arcsn ( x , k ) , are equivalent to (22.15.12) and also to … can be transformed into normal form by elementary change of variables. …
    29: 18.25 Wilson Class: Definitions
    For the Wilson class OP’s p n ( x ) with x = λ ( y ) : if the y -orthogonality set is { 0 , 1 , , N } , then the role of the differentiation operator d / d x in the Jacobi, Laguerre, and Hermite cases is played by the operator Δ y followed by division by Δ y ( λ ( y ) ) , or by the operator y followed by division by y ( λ ( y ) ) . … Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) .
    Table 18.25.1: Wilson class OP’s: transformations of variable, orthogonality ranges, and parameter constraints.
    OP p n ( x ) x = λ ( y ) Orthogonality range for y Constraints
    30: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • E. Hahn (1980) Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen. Math. Z. 171 (3), pp. 201–226 (German).
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • R. A. Handelsman and J. S. Lew (1970) Asymptotic expansion of Laplace transforms near the origin. SIAM J. Math. Anal. 1 (1), pp. 118–130.
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.