About the Project

Jacobi theta functions

AdvancedHelp

(0.010 seconds)

21—30 of 45 matching pages

21: 10.35 Generating Function and Associated Series
Jacobi–Anger expansions: for z , θ , …
22: 18.16 Zeros
Let θ n , m = θ n , m ( α , β ) , m = 1 , 2 , , n , denote the zeros of P n ( α , β ) ( cos θ ) as function of θ with …
23: 23.6 Relations to Other Functions
23.6.2 e 1 = π 2 12 ω 1 2 ( θ 2 4 ( 0 , q ) + 2 θ 4 4 ( 0 , q ) ) ,
23.6.3 e 2 = π 2 12 ω 1 2 ( θ 2 4 ( 0 , q ) θ 4 4 ( 0 , q ) ) ,
23.6.4 e 3 = π 2 12 ω 1 2 ( 2 θ 2 4 ( 0 , q ) + θ 4 4 ( 0 , q ) ) .
23.6.8 η 1 = π 2 12 ω 1 θ 1 ′′′ ( 0 , q ) θ 1 ( 0 , q ) .
24: 22.20 Methods of Computation
If either k or x is complex then (22.2.6) gives the definition of dn ( x , k ) as a quotient of theta functions. … If either τ or q = e i π τ is given, then we use k = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) , k = θ 4 2 ( 0 , q ) / θ 3 2 ( 0 , q ) , K = 1 2 π θ 3 2 ( 0 , q ) , and K = i τ K , obtaining the values of the theta functions as in §20.14. … Jacobi’s epsilon function can be computed from its representation (22.16.30) in terms of theta functions and complete elliptic integrals; compare §20.14. …
25: 18.15 Asymptotic Approximations
18.15.1 ( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = π 1 2 2 n + α + β + 1 B ( n + α + 1 , n + β + 1 ) ( m = 0 M 1 f m ( θ ) 2 m ( 2 n + α + β + 2 ) m + O ( n M ) ) ,
18.15.4_5 ( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = π 1 2 n 1 2 cos ( 1 2 ( 2 n + α + β + 1 ) θ 1 4 ( 2 α + 1 ) π ) + O ( n 3 2 ) , α , β ,
18.15.6 ( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = Γ ( n + α + 1 ) 2 1 2 ρ α n ! ( θ 1 2 J α ( ρ θ ) m = 0 M A m ( θ ) ρ 2 m + θ 3 2 J α + 1 ( ρ θ ) m = 0 M 1 B m ( θ ) ρ 2 m + 1 + ε M ( ρ , θ ) ) ,
26: 25.5 Integral Representations
25.5.14 ω ( x ) n = 1 e n 2 π x = 1 2 ( θ 3 ( 0 | i x ) 1 ) .
27: 10.12 Generating Function and Associated Series
§10.12 Generating Function and Associated Series
Jacobi–Anger expansions: for z , θ ,
cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z sin θ ) = 2 k = 0 J 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) ,
cos ( z cos θ ) = J 0 ( z ) + 2 k = 1 ( 1 ) k J 2 k ( z ) cos ( 2 k θ ) ,
28: 18.10 Integral Representations
18.10.1 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin θ ) 2 α 0 θ cos ( ( n + α + 1 2 ) ϕ ) ( cos ϕ cos θ ) α + 1 2 d ϕ , 0 < θ < π , α > 1 2 .
18.10.3 P n ( α , β ) ( cos θ ) P n ( α , β ) ( 1 ) = 2 Γ ( α + 1 ) π 1 2 Γ ( α β ) Γ ( β + 1 2 ) 0 1 0 π ( ( cos 1 2 θ ) 2 r 2 ( sin 1 2 θ ) 2 + i r sin θ cos ϕ ) n ( 1 r 2 ) α β 1 r 2 β + 1 ( sin ϕ ) 2 β d ϕ d r , α > β > 1 2 .
18.10.4 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) 0 π ( cos θ + i sin θ cos ϕ ) n ( sin ϕ ) 2 α d ϕ , α > 1 2 .
29: 22.21 Tables
§22.21 Tables
Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. … Tables of theta functions20.15) can also be used to compute the twelve Jacobian elliptic functions by application of the quotient formulas given in §22.2.
30: 20.14 Methods of Computation
§20.14 Methods of Computation
The Fourier series of §20.2(i) usually converge rapidly because of the factors q ( n + 1 2 ) 2 or q n 2 , and provide a convenient way of calculating values of θ j ( z | τ ) . …For instance, the first three terms of (20.2.1) give the value of θ 1 ( 2 i | i ) ( = θ 1 ( 2 i , e π ) ) to 12 decimal places. … For instance, to find θ 3 ( z , 0.9 ) we use (20.7.32) with q = 0.9 = e i π τ , τ = i ln ( 0.9 ) / π . …Hence the first term of the series (20.2.3) for θ 3 ( z τ | τ ) suffices for most purposes. …