About the Project

Jacobi inversion problem for elliptic functions

AdvancedHelp

(0.006 seconds)

10 matching pages

1: 20.9 Relations to Other Functions
The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …
2: 20.11 Generalizations and Analogs
If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): … As in §20.11(ii), the modulus k of elliptic integrals (§19.2(ii)), Jacobian elliptic functions22.2), and Weierstrass elliptic functions23.6(ii)) can be expanded in q -series via (20.9.1). …This is Jacobi’s inversion problem of §20.9(ii). … Each provides an extension of Jacobi’s inversion problem. …
3: 22.19 Physical Applications
§22.19(i) Classical Dynamics: The Pendulum
§22.19(iii) Nonlinear ODEs and PDEs
§22.19(v) Other Applications
Numerous other physical or engineering applications involving Jacobian elliptic functions, and their inverses, to problems of classical dynamics, electrostatics, and hydrodynamics appear in Bowman (1953, Chapters VII and VIII) and Lawden (1989, Chapter 5). …
4: Bibliography E
  • U. Eckhardt (1980) Algorithm 549: Weierstrass’ elliptic functions. ACM Trans. Math. Software 6 (1), pp. 112–120.
  • ECMNET Project (website)
  • U. T. Ehrenmark (1995) The numerical inversion of two classes of Kontorovich-Lebedev transform by direct quadrature. J. Comput. Appl. Math. 61 (1), pp. 43–72.
  • D. Elliott (1971) Uniform asymptotic expansions of the Jacobi polynomials and an associated function. Math. Comp. 25 (114), pp. 309–315.
  • W. J. Ellison (1971) Waring’s problem. Amer. Math. Monthly 78 (1), pp. 10–36.
  • 5: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • E. L. Ince (1932) Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 52, pp. 355–433.
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail (1986) Asymptotics of the Askey-Wilson and q -Jacobi polynomials. SIAM J. Math. Anal. 17 (6), pp. 1475–1482.
  • 6: Bibliography K
  • A. Khare, A. Lakshminarayan, and U. Sukhatme (2003) Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys. 44 (4), pp. 1822–1841.
  • A. Khare and U. Sukhatme (2002) Cyclic identities involving Jacobi elliptic functions. J. Math. Phys. 43 (7), pp. 3798–3806.
  • A. Khare and U. Sukhatme (2004) Connecting Jacobi elliptic functions with different modulus parameters. Pramana 63 (5), pp. 921–936.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin (1993) Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge.
  • 7: Bibliography R
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • E. Ya. Remez (1957) General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • M. Rothman (1954b) The problem of an infinite plate under an inclined loading, with tables of the integrals of Ai ( ± x ) and Bi ( ± x ) . Quart. J. Mech. Appl. Math. 7 (1), pp. 1–7.
  • R. Roy (2017) Elliptic and modular functions from Gauss to Dedekind to Hecke. Cambridge University Press, Cambridge.
  • 8: Bibliography C
  • L. Carlitz (1963) The inverse of the error function. Pacific J. Math. 13 (2), pp. 459–470.
  • B. C. Carlson (1965) On computing elliptic integrals and functions. J. Math. and Phys. 44, pp. 36–51.
  • B. C. Carlson (2005) Jacobian elliptic functions as inverses of an integral. J. Comput. Appl. Math. 174 (2), pp. 355–359.
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • A. Cayley (1961) An Elementary Treatise on Elliptic Functions. Dover Publications, New York (English).
  • 9: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • P. Baldwin (1991) Coefficient functions for an inhomogeneous turning-point problem. Mathematika 38 (2), pp. 217–238.
  • W. G. C. Boyd (1987) Asymptotic expansions for the coefficient functions that arise in turning-point problems. Proc. Roy. Soc. London Ser. A 410, pp. 35–60.
  • N. Brazel, F. Lawless, and A. Wood (1992) Exponential asymptotics for an eigenvalue of a problem involving parabolic cylinder functions. Proc. Amer. Math. Soc. 114 (4), pp. 1025–1032.
  • R. Bulirsch (1965b) Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7 (1), pp. 78–90.
  • 10: Bibliography J
  • C. G. J. Jacobi (1829) Fundamenta Nova Theoriae Functionum Ellipticarum. Regiomonti, Sumptibus fratrum Bornträger.
  • D. J. Jeffrey, R. M. Corless, D. E. G. Hare, and D. E. Knuth (1995) Sur l’inversion de y α e y au moyen des nombres de Stirling associés. C. R. Acad. Sci. Paris Sér. I Math. 320 (12), pp. 1449–1452.
  • N. Joshi and A. V. Kitaev (2005) The Dirichlet boundary value problem for real solutions of the first Painlevé equation on segments in non-positive semi-axis. J. Reine Angew. Math. 583, pp. 29–86.
  • N. Joshi and M. D. Kruskal (1992) The Painlevé connection problem: An asymptotic approach. I. Stud. Appl. Math. 86 (4), pp. 315–376.
  • JTEM (website) Java Tools for Experimental Mathematics