About the Project

Hilbert%20space

AdvancedHelp

(0.003 seconds)

1—10 of 144 matching pages

1: 25.17 Physical Applications
This relates to a suggestion of Hilbert and Pólya that the zeros are eigenvalues of some operator, and the Riemann hypothesis is true if that operator is Hermitian. … Quantum field theory often encounters formally divergent sums that need to be evaluated by a process of regularization: for example, the energy of the electromagnetic vacuum in a confined space (Casimir–Polder effect). …
2: Brian D. Sleeman
He is author of the book Multiparameter spectral theory in Hilbert space, published by Pitman in 1978, and coauthor (with D. …
3: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
§1.18(i) Hilbert spaces
§1.18(iii) Linear Operators on a Hilbert Space
In the following let V be a Hilbert space. …
Self-Adjoint and Symmetric Operators
4: 31.16 Mathematical Applications
Expansions of Heun polynomial products in terms of Jacobi polynomial (§18.3) products are derived in Kalnins and Miller (1991a, b, 1993) from the viewpoint of interrelation between two bases in a Hilbert space: …
5: Bibliography O
  • A. M. Odlyzko (1987) On the distribution of spacings between zeros of the zeta function. Math. Comp. 48 (177), pp. 273–308.
  • M. N. Olevskiĭ (1950) Triorthogonal systems in spaces of constant curvature in which the equation Δ 2 u + λ u = 0 allows a complete separation of variables. Mat. Sbornik N.S. 27(69) (3), pp. 379–426 (Russian).
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • A. M. Ostrowski (1973) Solution of Equations in Euclidean and Banach Spaces. Pure and Applied Mathematics, Vol. 9, Academic Press, New York-London.
  • 6: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • G. E. Shilov (2013) Introduction to the Theory of Linear Spaces. Martino, Mansfield Center, CT.
  • B. D. Sleeman (1978) Multiparameter spectral theory in Hilbert space. Research Notes in Mathematics, Vol. 22, Pitman (Advanced Publishing Program), Boston, Mass.-London.
  • M. H. Stone (1990) Linear transformations in Hilbert space. American Mathematical Society Colloquium Publications, Vol. 15, American Mathematical Society, Providence, RI.
  • 7: Alexander A. Its
     Matveev), published by Springer in 1994, and Painlevé Transcendents: The Riemann-Hilbert Approach (with A. …
    8: 31.15 Stieltjes Polynomials
    31.15.12 ρ ( z ) = ( j = 1 N 1 k = 1 N | z j a k | γ k 1 ) ( j < k N 1 ( z k z j ) ) .
    The normalized system of products (31.15.8) forms an orthonormal basis in the Hilbert space L ρ 2 ( Q ) . …
    9: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • P. A. Deift (1998) Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, Vol. 3, New York University Courant Institute of Mathematical Sciences, New York.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • N. Dunford and J. T. Schwartz (1988) Linear operators. Part II. Wiley Classics Library, John Wiley & Sons, Inc., New York.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 10: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry and F. J. Wright (1980) Phase-space projection identities for diffraction catastrophes. J. Phys. A 13 (1), pp. 149–160.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • P. Bleher and A. Its (1999) Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1), pp. 185–266.