About the Project

Hankel functions

AdvancedHelp

(0.006 seconds)

21—30 of 72 matching pages

21: 10.8 Power Series
§10.8 Power Series
22: 10.27 Connection Formulas
10.27.8 K ν ( z ) = { 1 2 π i e ν π i / 2 H ν ( 1 ) ( z e π i / 2 ) , π ph z 1 2 π , 1 2 π i e ν π i / 2 H ν ( 2 ) ( z e π i / 2 ) , 1 2 π ph z π .
23: 10.22 Integrals
Products
Trigonometric Arguments
Convolutions
Fractional Integral
§10.22(v) Hankel Transform
24: 10.41 Asymptotic Expansions for Large Order
§10.41(v) Double Asymptotic Properties (Continued)
We first prove that for the expansions (10.20.6) for the Hankel functions H ν ( 1 ) ( ν z ) and H ν ( 2 ) ( ν z ) the z -asymptotic property applies when z ± i , respectively. …
25: 10.61 Definitions and Basic Properties
10.61.2 ker ν x + i kei ν x = e ν π i / 2 K ν ( x e π i / 4 ) = 1 2 π i H ν ( 1 ) ( x e 3 π i / 4 ) = 1 2 π i e ν π i H ν ( 2 ) ( x e π i / 4 ) .
26: 11.2 Definitions
27: 10.23 Sums
§10.23(i) Multiplication Theorem
§10.23(ii) Addition Theorems
For collections of sums of series involving Bessel or Hankel functions see Erdélyi et al. (1953b, §7.15), Gradshteyn and Ryzhik (2000, §§8.51–8.53), Hansen (1975), Luke (1969b, §9.4), Prudnikov et al. (1986b, pp. 651–691 and 697–700), and Wheelon (1968, pp. 48–51).
28: 28.23 Expansions in Series of Bessel Functions
§28.23 Expansions in Series of Bessel Functions
𝒞 μ ( 3 ) = H μ ( 1 ) ,
𝒞 μ ( 4 ) = H μ ( 2 ) ;
28.23.2 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = n = ( 1 ) n c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
29: 10.51 Recurrence Relations and Derivatives
Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
30: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • J. A. Cochran and J. N. Hoffspiegel (1970) Numerical techniques for finding ν -zeros of Hankel functions. Math. Comp. 24 (110), pp. 413–422.
  • J. A. Cochran (1965) The zeros of Hankel functions as functions of their order. Numer. Math. 7 (3), pp. 238–250.
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • A. Cruz and J. Sesma (1982) Zeros of the Hankel function of real order and of its derivative. Math. Comp. 39 (160), pp. 639–645.