About the Project

Fej%C3%A9r%E2%80%99s

AdvancedHelp

(0.003 seconds)

11—20 of 610 matching pages

11: 10.31 Power Series
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
12: Bibliography K
  • K. W. J. Kadell (1988) A proof of Askey’s conjectured q -analogue of Selberg’s integral and a conjecture of Morris. SIAM J. Math. Anal. 19 (4), pp. 969–986.
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • D. E. Knuth (1992) Two notes on notation. Amer. Math. Monthly 99 (5), pp. 403–422.
  • K. S. Kölbig (1986) Nielsen’s generalized polylogarithms. SIAM J. Math. Anal. 17 (5), pp. 1232–1258.
  • Koornwinder (website) Tom Koornwinder’s Personal Collection of Maple Procedures
  • 13: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • 14: Bibliography L
  • D. F. Lawden (1989) Elliptic Functions and Applications. Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York.
  • D. H. Lehmer (1943) Ramanujan’s function τ ( n ) . Duke Math. J. 10 (3), pp. 483–492.
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • S. Lewanowicz (1985) Recurrence relations for hypergeometric functions of unit argument. Math. Comp. 45 (172), pp. 521–535.
  • L.-W. Li, T. S. Yeo, P. S. Kooi, and M. S. Leong (1998b) Microwave specific attenuation by oblate spheroidal raindrops: An exact analysis of TCS’s in terms of spheroidal wave functions. J. Electromagn. Waves Appl. 12 (6), pp. 709–711.
  • 15: 26.13 Permutations: Cycle Notation
    𝔖 n denotes the set of permutations of { 1 , 2 , , n } . σ 𝔖 n is a one-to-one and onto mapping from { 1 , 2 , , n } to itself. … The number of elements of 𝔖 n with cycle type ( a 1 , a 2 , , a n ) is given by (26.4.7). … The derangement number, d ( n ) , is the number of elements of 𝔖 n with no fixed points: … Given a permutation σ 𝔖 n , the inversion number of σ , denoted inv ( σ ) , is the least number of adjacent transpositions required to represent σ . …
    16: Bibliography J
  • A. J. E. M. Janssen (2021) Bounds on Dawson’s integral occurring in the analysis of a line distribution network for electric vehicles. Eurandom Preprint Series Technical Report 14, Eurandom, Eindhoven, The Netherlands.
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • D. S. Jones and B. D. Sleeman (2003) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series, Chapman & Hall/CRC, Boca Raton, FL.
  • D. S. Jones (1972) Asymptotic behavior of integrals. SIAM Rev. 14 (2), pp. 286–317.
  • B. R. Judd (1976) Modifications of Coulombic interactions by polarizable atoms. Math. Proc. Cambridge Philos. Soc. 80 (3), pp. 535–539.
  • 17: 19.37 Tables
    §19.37 Tables
    §19.37(ii) Legendre’s Complete Integrals
    §19.37(iii) Legendre’s Incomplete Integrals
    Tabulated for ϕ = 5 ( 5 ) 80 ( 2.5 ) 90 , α 2 = 1 ( .1 ) 0.1 , 0.1 ( .1 ) 1 , k 2 = 0 ( .05 ) 0.9 ( .02 ) 1 to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). …
    18: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … This is the number of positive integers n that are relatively prime to n ; ϕ ( n ) is Euler’s totient. … This is Jordan’s function. … This is Liouville’s function. … This is Mangoldt’s function. …
    19: 8.23 Statistical Applications
    In queueing theory the Erlang loss function is used, which can be expressed in terms of the reciprocal of Q ( a , x ) ; see Jagerman (1974) and Cooper (1981, pp. 80, 316–319). …
    20: 26.6 Other Lattice Path Numbers
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    10 1 21 221 1561 8361 36365 1 34245 4 33905 12 56465 33 17445 80 97453