About the Project

Euler integral

AdvancedHelp

(0.010 seconds)

11—20 of 206 matching pages

11: 35.8 Generalized Hypergeometric Functions of Matrix Argument
Euler Integral
35.8.13 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 1 2 ( m + 1 ) | 𝐈 𝐗 | b 1 a 1 1 2 ( m + 1 ) F q p ( a 2 , , a p + 1 b 2 , , b q + 1 ; 𝐓 𝐗 ) d 𝐗 = 1 B m ( b 1 a 1 , a 1 ) F q + 1 p + 1 ( a 1 , , a p + 1 b 1 , , b q + 1 ; 𝐓 ) , ( b 1 a 1 ) , ( a 1 ) > 1 2 ( m 1 ) .
12: 35.4 Partitions and Zonal Polynomials
13: 6.2 Definitions and Interrelations
6.2.7 Ei ( ± x ) = Ein ( x ) + ln x + γ .
6.2.13 Ci ( z ) = Cin ( z ) + ln z + γ .
6.2.16 Chi ( z ) = γ + ln z + 0 z cosh t 1 t d t .
14: 5.9 Integral Representations
5.9.11_1 Γ ( z ) = 1 1 2 π i 0 e 2 π t Γ ( t e i π / 2 ) t + i z d t + 1 2 π i 0 e 2 π t Γ ( t e i π / 2 ) t i z d t ,
5.9.11_2 1 Γ ( z ) = 1 1 2 π i 0 e 2 π t Γ ( t e i π / 2 ) t i z d t + 1 2 π i 0 e 2 π t Γ ( t e i π / 2 ) t + i z d t ,
§5.9(ii) Psi Function, Euler’s Constant, and Derivatives
5.9.16 ψ ( z ) + γ = 0 e t e z t 1 e t d t = 0 1 1 t z 1 1 t d t .
15: 24.17 Mathematical Applications
16: 31.9 Orthogonality
31.9.2 ζ ( 1 + , 0 + , 1 , 0 ) t γ 1 ( 1 t ) δ 1 ( t a ) ϵ 1 w m ( t ) w k ( t ) d t = δ m , k θ m .
17: 25.2 Definition and Expansions
25.2.8 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 s N x x x s + 1 d x , s > 0 , N = 1 , 2 , 3 , .
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
18: 19.11 Addition Theorems
19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
19: 5.12 Beta Function
Euler’s Beta Integral
5.12.1 B ( a , b ) = 0 1 t a 1 ( 1 t ) b 1 d t = Γ ( a ) Γ ( b ) Γ ( a + b ) .
5.12.3 0 t a 1 d t ( 1 + t ) a + b = B ( a , b ) .
5.12.4 0 1 t a 1 ( 1 t ) b 1 ( t + z ) a + b d t = B ( a , b ) ( 1 + z ) a z b , | ph z | < π .
5.12.7 0 cosh ( 2 b t ) ( cosh t ) 2 a d t = 4 a 1 B ( a + b , a b ) , a > | b | .
20: 19.18 Derivatives and Differential Equations
and two similar equations obtained by permuting x , y , z in (19.18.10). More concisely, if v = R a ( 𝐛 ; 𝐳 ) , then each of (19.16.14)–(19.16.18) and (19.16.20)–(19.16.23) satisfies Euler’s homogeneity relation: … The next four differential equations apply to the complete case of R F and R G in the form R a ( 1 2 , 1 2 ; z 1 , z 2 ) (see (19.16.20) and (19.16.23)). The function w = R a ( 1 2 , 1 2 ; x + y , x y ) satisfies an Euler–Poisson–Darboux equation: …