About the Project

Euler–Poisson–Darboux equation

AdvancedHelp

(0.002 seconds)

21—30 of 622 matching pages

21: 18.12 Generating Functions
18.12.2 𝐅 1 0 ( α + 1 ; ( x 1 ) z 2 ) 𝐅 1 0 ( β + 1 ; ( x + 1 ) z 2 ) = ( 1 2 ( 1 x ) z ) 1 2 α J α ( 2 ( 1 x ) z ) ( 1 2 ( 1 + x ) z ) 1 2 β I β ( 2 ( 1 + x ) z ) = n = 0 P n ( α , β ) ( x ) Γ ( n + α + 1 ) Γ ( n + β + 1 ) z n ,
18.12.2_5 F 1 2 ( γ , α + β + 1 γ α + 1 ; 1 R z 2 ) F 1 2 ( γ , α + β + 1 γ β + 1 ; 1 R + z 2 ) = n = 0 ( γ ) n ( α + β + 1 γ ) n ( α + 1 ) n ( β + 1 ) n P n ( α , β ) ( x ) z n , R = 1 2 x z + z 2 , | z | < 1 ,
with γ arbitrary. Note that (18.12.2_5) yields (18.12.1) by putting γ = 0 and (18.12.2) by replacing z by γ 2 z and next letting γ . … See §18.18(vii) for Poisson kernels; these are special cases of bilateral generating functions.
22: 24.4 Basic Properties
§24.4(i) Difference Equations
§24.4(ii) Symmetry
§24.4(iii) Sums of Powers
§24.4(iv) Finite Expansions
Next, …
23: 31.14 General Fuchsian Equation
§31.14 General Fuchsian Equation
§31.14(i) Definitions
The exponents at the finite singularities a j are { 0 , 1 γ j } and those at are { α , β } , where …The three sets of parameters comprise the singularity parameters a j , the exponent parameters α , β , γ j , and the N 2 free accessory parameters q j . …
Normal Form
24: 30.6 Functions of Complex Argument
The solutions …of (30.2.1) with μ = m and λ = λ n m ( γ 2 ) are real when z ( 1 , ) , and their principal values (§4.2(i)) are obtained by analytic continuation to ( , 1 ] . … with A n ± m ( γ 2 ) as in (30.11.4). … For results for Equation (30.2.1) with complex parameters see Meixner and Schäfke (1954).
25: 1.8 Fourier Series
1.8.5 1 π π π | f ( x ) | 2 d x = 1 2 | a 0 | 2 + n = 1 ( | a n | 2 + | b n | 2 ) ,
1.8.6 1 2 π π π | f ( x ) | 2 d x = n = | c n | 2 ,
§1.8(iv) Poisson’s Summation Formula
1.8.13Moved to (1.8.6_1).
1.8.16 n = e ( n + x ) 2 ω = π ω ( 1 + 2 n = 1 e n 2 π 2 / ω cos ( 2 n π x ) ) , ω > 0 .
26: 16.16 Transformations of Variables
16.16.5 F 3 ( α , γ α ; β , γ β ; γ ; x , y ) = ( 1 y ) α + β γ F 1 2 ( α , β γ ; x + y x y ) ,
16.16.5_5 F 4 ( α , β ; γ , β ; x ( 1 y ) , y ( 1 x ) ) = ( 1 x ) α ( 1 y ) α F 1 ( α ; γ β , α γ + 1 ; γ ; x x 1 , x y ( 1 x ) ( 1 y ) ) ,
16.16.7 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = k = 0 ( α ) k ( β ) k ( α + β γ γ + 1 ) k ( γ ) k ( γ ) k k ! x k y k F 1 2 ( α + k , β + k γ + k ; x ) F 1 2 ( α + k , β + k γ + k ; y ) ;
16.16.9 F 2 ( α ; β , β ; γ , γ ; x , y ) = ( 1 x ) α F 2 ( α ; γ β , β ; γ , γ ; x x 1 , y 1 x ) ,
16.16.10 F 4 ( α , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( β α ) Γ ( γ α ) Γ ( β ) ( y ) α F 4 ( α , α γ + 1 ; γ , α β + 1 ; x y , 1 y ) + Γ ( γ ) Γ ( α β ) Γ ( γ β ) Γ ( α ) ( y ) β F 4 ( β , β γ + 1 ; γ , β α + 1 ; x y , 1 y ) .
27: Bibliography W
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • P. L. Walker (2007) The zeros of Euler’s psi function and its derivatives. J. Math. Anal. Appl. 332 (1), pp. 607–616.
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • R. Wong and M. Wyman (1974) The method of Darboux. J. Approximation Theory 10 (2), pp. 159–171.
  • R. Wong and Y. Zhao (2005) On a uniform treatment of Darboux’s method. Constr. Approx. 21 (2), pp. 225–255.
  • 28: 15.11 Riemann’s Differential Equation
    §15.11 Riemann’s Differential Equation
    The most general form is given by … Here { a 1 , a 2 } , { b 1 , b 2 } , { c 1 , c 2 } are the exponent pairs at the points α , β , γ , respectively. …Also, if any of α , β , γ , is at infinity, then we take the corresponding limit in (15.11.1). … These constants can be chosen to map any two sets of three distinct points { α , β , γ } and { α ~ , β ~ , γ ~ } onto each other. …
    29: 20.11 Generalizations and Analogs
    This is the discrete analog of the Poisson identity (§1.8(iv)). … The first of equations (20.9.2) can also be written … The importance of these combined theta functions is that sets of twelve equations for the theta functions often can be replaced by corresponding sets of three equations of the combined theta functions, plus permutation symmetry. Such sets of twelve equations include derivatives, differential equations, bisection relations, duplication relations, addition formulas (including new ones for theta functions), and pseudo-addition formulas. …
    30: 8.2 Definitions and Basic Properties
    The general values of the incomplete gamma functions γ ( a , z ) and Γ ( a , z ) are defined by … In this subsection the functions γ and Γ have their general values. The function γ ( a , z ) is entire in z and a . … If w = γ ( a , z ) or Γ ( a , z ) , then … If w = e z z 1 a Γ ( a , z ) , then …