About the Project

Chu–Vandermonde sums (first and second)

AdvancedHelp

(0.003 seconds)

31—40 of 517 matching pages

31: 26.21 Tables
§26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. … It also contains a table of Gaussian polynomials up to [ 12 6 ] q . …
32: 10.60 Sums
§10.60 Sums
§10.60(i) Addition Theorems
§10.60(ii) Duplication Formulas
For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000).
§10.60(iv) Compendia
33: 10.41 Asymptotic Expansions for Large Order
10.41.4 K ν ( ν z ) ( π 2 ν ) 1 2 e ν η ( 1 + z 2 ) 1 4 k = 0 ( 1 ) k U k ( p ) ν k ,
10.41.5 I ν ( ν z ) ( 1 + z 2 ) 1 4 e ν η ( 2 π ν ) 1 2 z k = 0 V k ( p ) ν k ,
10.41.14 J ν ( ν z ) = ( 4 ζ 1 z 2 ) 1 4 ( Ai ( ν 2 3 ζ ) ν 1 3 ( k = 0 A k ( ζ ) ν 2 k + O ( 1 ζ 3 + 3 ) ) + Ai ( ν 2 3 ζ ) ν 5 3 ( k = 0 1 B k ( ζ ) ν 2 k + O ( 1 ζ 3 + 1 ) ) ) ,
10.41.15 Y ν ( ν z ) = ( 4 ζ 1 z 2 ) 1 4 ( Bi ( ν 2 3 ζ ) ν 1 3 ( k = 0 A k ( ζ ) ν 2 k + O ( 1 ζ 3 + 3 ) ) + Bi ( ν 2 3 ζ ) ν 5 3 ( k = 0 1 B k ( ζ ) ν 2 k + O ( 1 ζ 3 + 1 ) ) ) ,
34: 10.26 Graphics
See accompanying text
Figure 10.26.1: I 0 ( x ) , I 1 ( x ) , K 0 ( x ) , K 1 ( x ) , 0 x 3 . Magnify
See accompanying text
Figure 10.26.2: e x I 0 ( x ) , e x I 1 ( x ) , e x K 0 ( x ) , e x K 1 ( x ) , 0 x 10 . Magnify
See accompanying text
Figure 10.26.7: I ~ 1 / 2 ( x ) , K ~ 1 / 2 ( x ) , 0.01 x 3 . Magnify
See accompanying text
Figure 10.26.8: I ~ 1 ( x ) , K ~ 1 ( x ) , 0.01 x 3 . Magnify
See accompanying text
Figure 10.26.9: I ~ 5 ( x ) , K ~ 5 ( x ) , 0.01 x 3 . Magnify
35: Bibliography O
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • A. B. Olde Daalhuis (2005b) Hyperasymptotics for nonlinear ODEs. II. The first Painlevé equation and a second-order Riccati equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2062), pp. 3005–3021.
  • H. Oser (1960) Algorithm 22: Riccati-Bessel functions of first and second kind. Comm. ACM 3 (11), pp. 600–601.
  • 36: 10.56 Generating Functions
    10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
    10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
    10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
    10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
    10.56.5 exp ( z 2 + 2 i z t ) z = e z z + 2 π n = 1 ( i t ) n n ! 𝗄 n 1 ( z ) .
    37: 18.12 Generating Functions
    18.12.7 1 z 2 1 2 x z + z 2 = 1 + 2 n = 1 T n ( x ) z n , | z | < 1 .
    18.12.8 1 x z 1 2 x z + z 2 = n = 0 T n ( x ) z n , | z | < 1 .
    18.12.9 ln ( 1 2 x z + z 2 ) = 2 n = 1 T n ( x ) n z n , | z | < 1 .
    18.12.10 1 1 2 x z + z 2 = n = 0 U n ( x ) z n , | z | < 1 .
    18.12.11 1 1 2 x z + z 2 = n = 0 P n ( x ) z n , | z | < 1 .
    38: Bibliography V
  • A. L. Van Buren, R. V. Baier, and S. Hanish (1970) A Fortran computer program for calculating the oblate spheroidal radial functions of the first and second kind and their first derivatives. NRL Report No. 6959 Naval Res. Lab.  Washingtion, D.C..
  • A. L. Van Buren and J. E. Boisvert (2004) Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives. Quart. Appl. Math. 62 (3), pp. 493–507.
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • J. F. Van Diejen and V. P. Spiridonov (2001) Modular hypergeometric residue sums of elliptic Selberg integrals. Lett. Math. Phys. 58 (3), pp. 223–238.
  • I. M. Vinogradov (1937) Representation of an odd number as a sum of three primes (Russian). Dokl. Akad. Nauk SSSR 15, pp. 169–172 (Russian).
  • 39: 14.13 Trigonometric Expansions
    14.13.1 𝖯 ν μ ( cos θ ) = 2 μ + 1 ( sin θ ) μ π 1 / 2 k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! sin ( ( ν + μ + 2 k + 1 ) θ ) ,
    14.13.2 𝖰 ν μ ( cos θ ) = π 1 / 2 2 μ ( sin θ ) μ k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! cos ( ( ν + μ + 2 k + 1 ) θ ) .
    14.13.3 𝖯 n ( cos θ ) = 2 2 n + 2 ( n ! ) 2 π ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) sin ( ( n + 2 k + 1 ) θ ) ,
    14.13.4 𝖰 n ( cos θ ) = 2 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) cos ( ( n + 2 k + 1 ) θ ) ,
    40: 4.27 Sums
    §4.27 Sums
    For sums of trigonometric and inverse trigonometric functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §§14–42), Oberhettinger (1973), and Prudnikov et al. (1986a, Chapter 5).