About the Project

Chu–Vandermonde sums (first and second)

AdvancedHelp

(0.005 seconds)

21—30 of 517 matching pages

21: 17.5 Ο• 0 0 , Ο• 0 1 , Ο• 1 1 Functions
β–Ί
Euler’s Second Sum
β–Ί
17.5.1 Ο• 0 0 ⁑ ( ; ; q , z ) = n = 0 ( 1 ) n ⁒ q ( n 2 ) ⁒ z n ( q ; q ) n = ( z ; q ) ;
β–Ί
Euler’s First Sum
β–Ί β–Ί
Cauchy’s Sum
22: 10.25 Definitions
β–Ί
10.25.2 I Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ ⁒ k = 0 ( 1 4 ⁒ z 2 ) k k ! ⁒ Ξ“ ⁑ ( Ξ½ + k + 1 ) .
β–ΊBoth I Ξ½ ⁑ ( z ) and K Ξ½ ⁑ ( z ) are real when Ξ½ is real and ph ⁑ z = 0 . β–ΊFor fixed z ( 0 ) each branch of I Ξ½ ⁑ ( z ) and K Ξ½ ⁑ ( z ) is entire in Ξ½ . … β–ΊExcept where indicated otherwise it is assumed throughout the DLMF that the symbols I Ξ½ ⁑ ( z ) and K Ξ½ ⁑ ( z ) denote the principal values of these functions. … β–ΊCorresponding to the symbol π’ž Ξ½ introduced in §10.2(ii), we sometimes use 𝒡 Ξ½ ⁑ ( z ) to denote I Ξ½ ⁑ ( z ) , e Ξ½ ⁒ Ο€ ⁒ i ⁒ K Ξ½ ⁑ ( z ) , or any nontrivial linear combination of these functions, the coefficients in which are independent of z and Ξ½ . …
23: 14.11 Derivatives with Respect to Degree or Order
β–Ί
14.11.2 Ξ½ ⁑ 𝖰 Ξ½ ΞΌ ⁑ ( x ) = 1 2 ⁒ Ο€ 2 ⁒ 𝖯 Ξ½ ΞΌ ⁑ ( x ) + Ο€ ⁒ sin ⁑ ( ΞΌ ⁒ Ο€ ) sin ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ sin ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖰 Ξ½ ΞΌ ⁑ ( x ) 1 2 ⁒ cot ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) + 1 2 ⁒ csc ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) ,
β–Ί
14.11.3 𝖠 Ξ½ ΞΌ ⁑ ( x ) = sin ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ ( 1 + x 1 x ) ΞΌ / 2 ⁒ k = 0 ( 1 2 1 2 ⁒ x ) k ⁒ Ξ“ ⁑ ( k Ξ½ ) ⁒ Ξ“ ⁑ ( k + Ξ½ + 1 ) k ! ⁒ Ξ“ ⁑ ( k ΞΌ + 1 ) ⁒ ( ψ ⁑ ( k + Ξ½ + 1 ) ψ ⁑ ( k Ξ½ ) ) .
β–Ί β–Ί β–Ί(14.11.4) holds if 𝖯 Ξ½ ΞΌ ⁑ ( x ) , 𝖯 Ξ½ ⁑ ( x ) , and 𝖰 Ξ½ ⁑ ( x ) are replaced by P Ξ½ ΞΌ ⁑ ( x ) , P Ξ½ ⁑ ( x ) , and Q Ξ½ ⁑ ( x ) , respectively. …
24: 33.20 Expansions for Small | Ο΅ |
β–ΊFor the functions J , Y , I , and K see §§10.2(ii), 10.25(ii). … β–Ί
33.20.3 f ⁑ ( Ο΅ , β„“ ; r ) = k = 0 Ο΅ k ⁒ π–₯ k ⁑ ( β„“ ; r ) ,
β–Ί
33.20.4 π–₯ k ⁑ ( β„“ ; r ) = p = 2 ⁒ k 3 ⁒ k ( 2 ⁒ r ) ( p + 1 ) / 2 ⁒ C k , p ⁒ J 2 ⁒ β„“ + 1 + p ⁑ ( 8 ⁒ r ) , r > 0 ,
β–Ί
33.20.5 π–₯ k ⁑ ( β„“ ; r ) = p = 2 ⁒ k 3 ⁒ k ( 1 ) β„“ + 1 + p ⁒ ( 2 ⁒ | r | ) ( p + 1 ) / 2 ⁒ C k , p ⁒ I 2 ⁒ β„“ + 1 + p ⁑ ( 8 ⁒ | r | ) , r < 0 .
β–Ί
33.20.7 h ⁑ ( Ο΅ , β„“ ; r ) A ⁑ ( Ο΅ , β„“ ) ⁒ k = 0 Ο΅ k ⁒ 𝖧 k ⁑ ( β„“ ; r ) ,
25: 10.43 Integrals
β–Ί
10.43.22 0 t ΞΌ 1 ⁒ e a ⁒ t ⁒ K Ξ½ ⁑ ( t ) ⁒ d t = { ( 1 2 ⁒ Ο€ ) 1 2 ⁒ Ξ“ ⁑ ( ΞΌ Ξ½ ) ⁒ Ξ“ ⁑ ( ΞΌ + Ξ½ ) ⁒ ( 1 a 2 ) 1 2 ⁒ ΞΌ + 1 4 ⁒ 𝖯 Ξ½ 1 2 ΞΌ + 1 2 ⁑ ( a ) , 1 < a < 1 , ( 1 2 ⁒ Ο€ ) 1 2 ⁒ Ξ“ ⁑ ( ΞΌ Ξ½ ) ⁒ Ξ“ ⁑ ( ΞΌ + Ξ½ ) ⁒ ( a 2 1 ) 1 2 ⁒ ΞΌ + 1 4 ⁒ P Ξ½ 1 2 ΞΌ + 1 2 ⁑ ( a ) , ⁑ a 0 , a 1 .
β–Ί
10.43.26 0 K ΞΌ ⁑ ( a ⁒ t ) ⁒ J Ξ½ ⁑ ( b ⁒ t ) t Ξ» ⁒ d t = b Ξ½ ⁒ Ξ“ ⁑ ( 1 2 ⁒ Ξ½ 1 2 ⁒ Ξ» + 1 2 ⁒ ΞΌ + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ Ξ½ 1 2 ⁒ Ξ» 1 2 ⁒ ΞΌ + 1 2 ) 2 Ξ» + 1 ⁒ a Ξ½ Ξ» + 1 ⁒ 𝐅 ⁑ ( Ξ½ Ξ» + ΞΌ + 1 2 , Ξ½ Ξ» ΞΌ + 1 2 ; Ξ½ + 1 ; b 2 a 2 ) , ⁑ ( Ξ½ + 1 Ξ» ) > | ⁑ ΞΌ | , ⁑ a > | ⁑ b | .
β–Ί
10.43.27 0 t ΞΌ + Ξ½ + 1 ⁒ K ΞΌ ⁑ ( a ⁒ t ) ⁒ J Ξ½ ⁑ ( b ⁒ t ) ⁒ d t = ( 2 ⁒ a ) ΞΌ ⁒ ( 2 ⁒ b ) Ξ½ ⁒ Ξ“ ⁑ ( ΞΌ + Ξ½ + 1 ) ( a 2 + b 2 ) ΞΌ + Ξ½ + 1 , ⁑ ( Ξ½ + 1 ) > | ⁑ ΞΌ | , ⁑ a > | ⁑ b | .
β–Ί
10.43.29 0 t ⁒ exp ⁑ ( p 2 ⁒ t 2 ) ⁒ I 0 ⁑ ( a ⁒ t ) ⁒ K 0 ⁑ ( a ⁒ t ) ⁒ d t = 1 4 ⁒ p 2 ⁒ exp ⁑ ( a 2 2 ⁒ p 2 ) ⁒ K 0 ⁑ ( a 2 2 ⁒ p 2 ) , ⁑ ( p 2 ) > 0 .
β–ΊFor collections of integrals of the functions I Ξ½ ⁑ ( z ) and K Ξ½ ⁑ ( z ) , including integrals with respect to the order, see Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2000, §§5.5, 6.5–6.7), Gröbner and Hofreiter (1950, pp. 197–203), Luke (1962), Magnus et al. (1966, §3.8), Marichev (1983, pp. 191–216), Oberhettinger (1972), Oberhettinger (1974, §§1.11 and 2.7), Oberhettinger (1990, §§1.17–1.20 and 2.17–2.20), Oberhettinger and Badii (1973, §§1.15 and 2.13), Okui (1974, 1975), Prudnikov et al. (1986b, §§1.11–1.12, 2.15–2.16, 3.2.8–3.2.10, and 3.4.1), Prudnikov et al. (1992a, §§3.15, 3.16), Prudnikov et al. (1992b, §§3.15, 3.16), Watson (1944, Chapter 13), and Wheelon (1968).
26: 10.40 Asymptotic Expansions for Large Argument
β–ΊCorresponding expansions for I Ξ½ ⁑ ( z ) , K Ξ½ ⁑ ( z ) , I Ξ½ ⁑ ( z ) , and K Ξ½ ⁑ ( z ) for other ranges of ph ⁑ z are obtainable by combining (10.34.3), (10.34.4), (10.34.6), and their differentiated forms, with (10.40.2) and (10.40.4). … β–Ί
10.40.5 I Ξ½ ⁑ ( z ) e z ( 2 ⁒ Ο€ ⁒ z ) 1 2 ⁒ k = 0 ( 1 ) k ⁒ a k ⁑ ( Ξ½ ) z k ± i ⁒ e ± Ξ½ ⁒ Ο€ ⁒ i ⁒ e z ( 2 ⁒ Ο€ ⁒ z ) 1 2 ⁒ k = 0 a k ⁑ ( Ξ½ ) z k , 1 2 ⁒ Ο€ + Ξ΄ ± ph ⁑ z 3 2 ⁒ Ο€ Ξ΄ .
β–Ί
10.40.6 I Ξ½ ⁑ ( z ) ⁒ K Ξ½ ⁑ ( z ) 1 2 ⁒ z ⁒ ( 1 1 2 ⁒ ΞΌ 1 ( 2 ⁒ z ) 2 + 1 3 2 4 ⁒ ( ΞΌ 1 ) ⁒ ( ΞΌ 9 ) ( 2 ⁒ z ) 4 β‹― ) ,
β–Ί
10.40.7 I Ξ½ ⁑ ( z ) ⁒ K Ξ½ ⁑ ( z ) 1 2 ⁒ z ⁒ ( 1 + 1 2 ⁒ ΞΌ 3 ( 2 ⁒ z ) 2 1 2 4 ⁒ ( ΞΌ 1 ) ⁒ ( ΞΌ 45 ) ( 2 ⁒ z ) 4 + β‹― ) ,
β–ΊIn the expansion (10.40.2) assume that z > 0 and the sum is truncated when k = β„“ 1 . …
27: 18.3 Definitions
β–Ί
Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
β–Ί β–Ίβ–Ί
Name p n ⁑ ( x ) ( a , b ) w ⁑ ( x ) h n k n k ~ n / k n Constraints
β–Ί
β–ΊIn this chapter, formulas for the Chebyshev polynomials of the second, third, and fourth kinds will not be given as extensively as those of the first kind. … β–Ί
18.3.1 n = 1 N + 1 T j ⁑ ( x N + 1 , n ) ⁒ T k ⁑ ( x N + 1 , n ) = 0 , 0 j N , 0 k N , j k ,
β–ΊWhen j = k 0 the sum in (18.3.1) is 1 2 ⁒ ( N + 1 ) . When j = k = 0 the sum in (18.3.1) is N + 1 . …
28: 29.15 Fourier Series and Chebyshev Series
β–Ί
29.15.10 p = 0 n A 2 ⁒ p + 1 2 = 1 ,
β–Ί
29.15.11 p = 0 n A 2 ⁒ p + 1 > 0 .
β–Ί
29.15.15 p = 0 n B 2 ⁒ p + 1 2 = 1 ,
β–Ί
29.15.25 p = 0 n B 2 ⁒ p + 2 2 = 1 ,
β–Ί
29.15.31 p = 0 n C 2 ⁒ p + 1 > 0 .
29: 19.8 Quadratic Transformations
β–Ί
19.8.6 E ⁑ ( k ) = Ο€ 2 ⁒ M ⁑ ( 1 , k ) ⁒ ( a 0 2 n = 0 2 n 1 ⁒ c n 2 ) = K ⁑ ( k ) ⁒ ( a 1 2 n = 2 2 n 1 ⁒ c n 2 ) , < k 2 < 1 , a 0 = 1 , g 0 = k ,
β–Ί
E ⁑ ( k ) = ( 1 + k ) ⁒ E ⁑ ( k 1 ) k ⁒ K ⁑ ( k ) .
β–Ί
E ⁑ ( Ο• , k ) = 1 2 ⁒ ( 1 + k ) ⁒ E ⁑ ( Ο• 1 , k 1 ) k ⁒ F ⁑ ( Ο• , k ) + 1 2 ⁒ ( 1 k ) ⁒ sin ⁑ Ο• 1 .
β–Ί
E ⁑ ( Ο• , k ) = ( 1 + k ) ⁒ E ⁑ ( Ο• 2 , k 2 ) + ( 1 k ) ⁒ F ⁑ ( Ο• 2 , k 2 ) k ⁒ sin ⁑ Ο• .
β–Ί
E ⁑ ( Ο• , k ) = ( 1 + k ) ⁒ E ⁑ ( ψ 1 , k 1 ) k ⁒ F ⁑ ( Ο• , k ) + ( 1 Ξ” ) ⁒ cot ⁑ Ο• ,
30: 22.16 Related Functions
β–Ί β–Ί β–Ί
22.16.30 β„° ⁑ ( x , k ) = 1 ΞΈ 3 2 ⁑ ( 0 , q ) ⁒ ΞΈ 4 ⁑ ( ΞΎ , q ) ⁒ d d ΞΎ ⁑ ΞΈ 4 ⁑ ( ΞΎ , q ) + E ⁑ ( k ) K ⁑ ( k ) ⁒ x ,
β–Ί β–ΊWith E ⁑ ( k ) and K ⁑ ( k ) as in §19.2(ii) and x ℝ , …