About the Project

Bessel inequality

AdvancedHelp

(0.001 seconds)

21—27 of 27 matching pages

21: Bibliography Q
  • F. Qi and J. Mei (1999) Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwendungen 18 (3), pp. 793–799.
  • F. Qi (2008) A new lower bound in the second Kershaw’s double inequality. J. Comput. Appl. Math. 214 (2), pp. 610–616.
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • 22: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1997) New tables of Bessel functions of complex argument. Comput. Math. Math. Phys. 37 (12), pp. 1480–1482.
  • J. S. Ball (2000) Automatic computation of zeros of Bessel functions and other special functions. SIAM J. Sci. Comput. 21 (4), pp. 1458–1464.
  • R. W. Barnard, K. Pearce, and L. Schovanec (2001) Inequalities for the perimeter of an ellipse. J. Math. Anal. Appl. 260 (2), pp. 295–306.
  • F. Bowman (1958) Introduction to Bessel Functions. Dover Publications Inc., New York.
  • P. S. Bullen (1998) A Dictionary of Inequalities. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 97, Longman, Harlow.
  • 23: 26.10 Integer Partitions: Other Restrictions
    Note that p ( 𝒟 3 , n ) p ( 𝒟 3 , n ) , with strict inequality for n 9 . It is known that for k > 3 , p ( 𝒟 k , n ) p ( A 1 , k + 3 , n ) , with strict inequality for n sufficiently large, provided that k = 2 m 1 , m = 3 , 4 , 5 , or k 32 ; see Yee (2004). …
    §26.10(vi) Bessel-Function Expansion
    26.10.17 p ( 𝒟 , n ) = π k = 1 A 2 k 1 ( n ) ( 2 k 1 ) 24 n + 1 I 1 ( π 2 k 1 24 n + 1 72 ) ,
    where I 1 ( x ) is the modified Bessel function (§10.25(ii)), and …
    24: 18.39 Applications in the Physical Sciences
    The functions ϕ n are expressed in terms of Romanovski–Bessel polynomials, or Laguerre polynomials by (18.34.7_1). The finite system of functions ψ n is orthonormal in L 2 ( , d x ) , see (18.34.7_3). … Note that violation of the Favard inequality, l + 1 + ( 2 Z / s ) > 0 , possible when Z < 0 , results in a zero or negative weight function. … See Yamani and Fishman (1975) for L 2 for expansions of both the regular and irregular spherical Bessel functions, which are the Pollaczeks with a = Z = 0 , and Coulomb functions for fixed l , Broad and Reinhardt (1976) for a many particle example, and the overview of Alhaidari et al. (2008). … For applications and an extension of the Szegő–Szász inequality (18.14.20) for Legendre polynomials ( α = β = 0 ) to obtain global bounds on the variation of the phase of an elastic scattering amplitude, see Cornille and Martin (1972, 1974). …
    25: 11.4 Basic Properties
    11.4.3 𝐇 n 1 2 ( z ) = ( 1 ) n J n + 1 2 ( z ) ,
    11.4.4 𝐋 n 1 2 ( z ) = I n + 1 2 ( z ) .
    §11.4(ii) Inequalities
    §11.4(iv) Expansions in Series of Bessel Functions
    11.4.22 𝐇 1 ( z ) = 2 π ( 1 J 0 ( z ) ) + 4 π k = 1 J 2 k ( z ) 4 k 2 1 = 4 k = 0 J 2 k + 1 2 ( 1 2 z ) J 2 k + 3 2 ( 1 2 z ) .
    26: Bibliography H
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • G. H. Hardy, J. E. Littlewood, and G. Pólya (1967) Inequalities. 2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge.
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • C. S. Herz (1955) Bessel functions of matrix argument. Ann. of Math. (2) 61 (3), pp. 474–523.
  • J. Humblet (1985) Bessel function expansions of Coulomb wave functions. J. Math. Phys. 26 (4), pp. 656–659.
  • 27: Bibliography C
  • S. M. Candel (1981) An algorithm for the Fourier-Bessel transform. Comput. Phys. Comm. 23 (4), pp. 343–353.
  • B. C. Carlson (1966) Some inequalities for hypergeometric functions. Proc. Amer. Math. Soc. 17 (1), pp. 32–39.
  • B. C. Carlson (1970) Inequalities for a symmetric elliptic integral. Proc. Amer. Math. Soc. 25 (3), pp. 698–703.
  • Y. Chow, L. Gatteschi, and R. Wong (1994) A Bernstein-type inequality for the Jacobi polynomial. Proc. Amer. Math. Soc. 121 (3), pp. 703–709.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.