About the Project

Bessel functions and Hankel functions

AdvancedHelp

(0.015 seconds)

11—20 of 66 matching pages

11: 9.6 Relations to Other Functions
§9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions
9.6.6 Ai ( z ) = ( z / 3 ) ( J 1 / 3 ( ζ ) + J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) ,
9.6.8 Bi ( z ) = z / 3 ( J 1 / 3 ( ζ ) J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e 2 π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 3 H 1 / 3 ( 1 ) ( ζ ) + e π i / 3 H 1 / 3 ( 2 ) ( ζ ) ) ,
§9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions
9.6.20 H 2 / 3 ( 2 ) ( ζ ) = e 2 π i / 3 H 2 / 3 ( 2 ) ( ζ ) = e π i / 6 ( 3 / z ) ( Ai ( z ) + i Bi ( z ) ) .
12: 10.3 Graphics
§10.3 Graphics
§10.3(i) Real Order and Variable
For the modulus and phase functions M ν ( x ) , θ ν ( x ) , N ν ( x ) , and ϕ ν ( x ) see §10.18. …
§10.3(ii) Real Order, Complex Variable
§10.3(iii) Imaginary Order, Real Variable
13: 10.19 Asymptotic Expansions for Large Order
§10.19 Asymptotic Expansions for Large Order
§10.19(i) Asymptotic Forms
§10.19(iii) Transition Region
See also §10.20(i).
14: 10.73 Physical Applications
The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …
15: 10.17 Asymptotic Expansions for Large Argument
§10.17(i) Hankel’s Expansions
§10.17(iii) Error Bounds for Real Argument and Order
§10.17(v) Exponentially-Improved Expansions
For higher re-expansions of the remainder terms see Olde Daalhuis and Olver (1995a) and Olde Daalhuis (1995, 1996).
16: 10.51 Recurrence Relations and Derivatives
Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
17: 10.23 Sums
§10.23(i) Multiplication Theorem
§10.23(ii) Addition Theorems
For collections of sums of series involving Bessel or Hankel functions see Erdélyi et al. (1953b, §7.15), Gradshteyn and Ryzhik (2000, §§8.51–8.53), Hansen (1975), Luke (1969b, §9.4), Prudnikov et al. (1986b, pp. 651–691 and 697–700), and Wheelon (1968, pp. 48–51).
18: 10.27 Connection Formulas
10.27.8 K ν ( z ) = { 1 2 π i e ν π i / 2 H ν ( 1 ) ( z e π i / 2 ) , π ph z 1 2 π , 1 2 π i e ν π i / 2 H ν ( 2 ) ( z e π i / 2 ) , 1 2 π ph z π .
19: 10.20 Uniform Asymptotic Expansions for Large Order
§10.20 Uniform Asymptotic Expansions for Large Order
10.20.6 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 2 e π i / 3 ( 4 ζ 1 z 2 ) 1 4 ( Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + e ± 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
10.20.9 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 4 e 2 π i / 3 z ( 1 z 2 4 ζ ) 1 4 ( e 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 4 3 k = 0 C k ( ζ ) ν 2 k + Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 2 3 k = 0 D k ( ζ ) ν 2 k ) ,
§10.20(iii) Double Asymptotic Properties
For asymptotic properties of the expansions (10.20.4)–(10.20.6) with respect to large values of z see §10.41(v).
20: 10.7 Limiting Forms