About the Project

Bessel and Hankel functions

AdvancedHelp

(0.006 seconds)

21—30 of 66 matching pages

21: 10.27 Connection Formulas
10.27.8 K ν ( z ) = { 1 2 π i e ν π i / 2 H ν ( 1 ) ( z e π i / 2 ) , π ph z 1 2 π , 1 2 π i e ν π i / 2 H ν ( 2 ) ( z e π i / 2 ) , 1 2 π ph z π .
22: 10.22 Integrals
Products
Trigonometric Arguments
Convolutions
Fractional Integral
§10.22(v) Hankel Transform
23: 10.41 Asymptotic Expansions for Large Order
§10.41(v) Double Asymptotic Properties (Continued)
We first prove that for the expansions (10.20.6) for the Hankel functions H ν ( 1 ) ( ν z ) and H ν ( 2 ) ( ν z ) the z -asymptotic property applies when z ± i , respectively. …
24: 10.23 Sums
§10.23(i) Multiplication Theorem
§10.23(ii) Addition Theorems
For collections of sums of series involving Bessel or Hankel functions see Erdélyi et al. (1953b, §7.15), Gradshteyn and Ryzhik (2000, §§8.51–8.53), Hansen (1975), Luke (1969b, §9.4), Prudnikov et al. (1986b, pp. 651–691 and 697–700), and Wheelon (1968, pp. 48–51).
25: 11.2 Definitions
26: 10.61 Definitions and Basic Properties
10.61.2 ker ν x + i kei ν x = e ν π i / 2 K ν ( x e π i / 4 ) = 1 2 π i H ν ( 1 ) ( x e 3 π i / 4 ) = 1 2 π i e ν π i H ν ( 2 ) ( x e π i / 4 ) .
27: 10.51 Recurrence Relations and Derivatives
Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
28: 28.23 Expansions in Series of Bessel Functions
§28.23 Expansions in Series of Bessel Functions
𝒞 μ ( 1 ) = J μ ,
𝒞 μ ( 3 ) = H μ ( 1 ) ,
𝒞 μ ( 4 ) = H μ ( 2 ) ;
29: 10.75 Tables
§10.75(iii) Zeros and Associated Values of the Bessel Functions, Hankel Functions, and their Derivatives
  • Döring (1966) tabulates all zeros of Y 0 ( z ) , Y 1 ( z ) , H 0 ( 1 ) ( z ) , H 1 ( 1 ) ( z ) , that lie in the sector | z | < 158 , | ph z | π , to 10D. Some of the smaller zeros of Y n ( z ) and H n ( 1 ) ( z ) for n = 2 , 3 , 4 , 5 , 15 are also included.

  • 30: 10.47 Definitions and Basic Properties
    10.47.5 𝗁 n ( 1 ) ( z ) = 1 2 π / z H n + 1 2 ( 1 ) ( z ) = ( 1 ) n + 1 i 1 2 π / z H n 1 2 ( 1 ) ( z ) ,
    10.47.6 𝗁 n ( 2 ) ( z ) = 1 2 π / z H n + 1 2 ( 2 ) ( z ) = ( 1 ) n i 1 2 π / z H n 1 2 ( 2 ) ( z ) .
    𝗃 n ( z ) and 𝗒 n ( z ) are the spherical Bessel functions of the first and second kinds, respectively; 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) are the spherical Bessel functions of the third kind. … For example, z n 𝗃 n ( z ) , z n + 1 𝗒 n ( z ) , z n + 1 𝗁 n ( 1 ) ( z ) , z n + 1 𝗁 n ( 2 ) ( z ) , z n 𝗂 n ( 1 ) ( z ) , z n + 1 𝗂 n ( 2 ) ( z ) , and z n + 1 𝗄 n ( z ) are all entire functions of z . …