About the Project

Bessel eigenfunction expansion

AdvancedHelp

(0.001 seconds)

10 matching pages

1: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
0 1 ( 1 + y ν + 1 2 ) | f ( y ) | d y < .
2: 30.9 Asymptotic Approximations and Expansions
For the eigenfunctions see Meixner and Schäfke (1954, §3.251) and Müller (1963). For uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). … For the eigenfunctions see Meixner and Schäfke (1954, §3.252) and Müller (1962). For uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). …
§30.9(iii) Other Approximations and Expansions
3: Bibliography M
  • P. Maroni (1995) An integral representation for the Bessel form. J. Comput. Appl. Math. 57 (1-2), pp. 251–260.
  • G. Matviyenko (1993) On the evaluation of Bessel functions. Appl. Comput. Harmon. Anal. 1 (1), pp. 116–135.
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • D. Müller, B. G. Kelly, and J. J. O’Brien (1994) Spheroidal eigenfunctions of the tidal equation. Phys. Rev. Lett. 73 (11), pp. 1557–1560.
  • H. J. W. Müller (1966c) On asymptotic expansions of ellipsoidal wave functions. Math. Nachr. 32, pp. 157–172.
  • 4: Errata
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • 5: Bibliography V
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • R. Vidūnas and N. M. Temme (2002) Symbolic evaluation of coefficients in Airy-type asymptotic expansions. J. Math. Anal. Appl. 269 (1), pp. 317–331.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 6: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • M. Razaz and J. L. Schonfelder (1980) High precision Chebyshev expansions for Airy functions and their derivatives. Technical report University of Birmingham Computer Centre.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 7: Bibliography T
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1958) Eigenfunction Expansions Associated with Second Order Differential Equations, Part 2, Partial Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1962a) Eigenfunction expansions associated with second-order differential equations. Part I. Second edition, Clarendon Press, Oxford.
  • 8: Bibliography J
  • L. Jager (1998) Fonctions de Mathieu et fonctions propres de l’oscillateur relativiste. Ann. Fac. Sci. Toulouse Math. (6) 7 (3), pp. 465–495 (French).
  • U. D. Jentschura and E. Lötstedt (2012) Numerical calculation of Bessel, Hankel and Airy functions. Computer Physics Communications 183 (3), pp. 506–519.
  • A. J. Jerri (1982) A note on sampling expansion for a transform with parabolic cylinder kernel. Inform. Sci. 26 (2), pp. 155–158.
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • S. Jorna and C. Springer (1971) Derivation of Green-type, transitional and uniform asymptotic expansions from differential equations. V. Angular oblate spheroidal wavefunctions p s ¯ n r ( η , h ) and q s ¯ n r ( η , h ) for large h . Proc. Roy. Soc. London Ser. A 321, pp. 545–555.
  • 9: Bibliography K
  • E. G. Kalnins and W. Miller (1991a) Hypergeometric expansions of Heun polynomials. SIAM J. Math. Anal. 22 (5), pp. 1450–1459.
  • E. G. Kalnins and W. Miller (1991b) Addendum: “Hypergeometric expansions of Heun polynomials”. SIAM J. Math. Anal. 22 (6), pp. 1803.
  • D. Karp, A. Savenkova, and S. M. Sitnik (2007) Series expansions for the third incomplete elliptic integral via partial fraction decompositions. J. Comput. Appl. Math. 207 (2), pp. 331–337.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • K. H. Kwon, L. L. Littlejohn, and G. J. Yoon (2006) Construction of differential operators having Bochner-Krall orthogonal polynomials as eigenfunctions. J. Math. Anal. Appl. 324 (1), pp. 285–303.
  • 10: 18.39 Applications in the Physical Sciences
    The nature of, and notations and common vocabulary for, the eigenvalues and eigenfunctions of self-adjoint second order differential operators is overviewed in §1.18. … Below we consider two potentials with analytically known eigenfunctions and eigenvalues where the spectrum is entirely point, or discrete, with all eigenfunctions being L 2 and forming a complete set. … These eigenfunctions are the orthonormal eigenfunctions of the time-independent Schrödinger equation … with an infinite set of orthonormal L 2 eigenfunctions
    Discretized and Continuum Expansions of Scattering Eigenfunctions in terms of Pollaczek Polynomials: J-matrix Theory