About the Project

Bernoulli

AdvancedHelp

(0.000 seconds)

21—30 of 66 matching pages

21: 4.19 Maclaurin Series and Laurent Series
In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)).
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,
4.19.7 ln ( sin z z ) = n = 1 ( 1 ) n 2 2 n 1 B 2 n n ( 2 n ) ! z 2 n , | z | < π ,
22: 24.11 Asymptotic Approximations
§24.11 Asymptotic Approximations
24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
24.11.5 ( 1 ) n / 2 1 ( 2 π ) n 2 ( n ! ) B n ( x ) { cos ( 2 π x ) , n  even , sin ( 2 π x ) , n  odd ,
23: 4.33 Maclaurin Series and Laurent Series
4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
For B 2 n see §24.2(i). …
24: 24.12 Zeros
§24.12(i) Bernoulli Polynomials: Real Zeros
§24.12(iii) Complex Zeros
For complex zeros of Bernoulli and Euler polynomials, see Delange (1987) and Dilcher (1988). A related topic is the irreducibility of Bernoulli and Euler polynomials. …
§24.12(iv) Multiple Zeros
25: B. L. J. Braaksma
… …
26: 24.8 Series Expansions
§24.8(i) Fourier Series
24.8.1 B 2 n ( x ) = ( 1 ) n + 1 2 ( 2 n ) ! ( 2 π ) 2 n k = 1 cos ( 2 π k x ) k 2 n ,
§24.8(ii) Other Series
24.8.6 B 4 n + 2 = ( 8 n + 4 ) k = 1 k 4 n + 1 e 2 π k 1 , n = 1 , 2 , ,
24.8.7 B 2 n = ( 1 ) n + 1 4 n 2 2 n 1 k = 1 k 2 n 1 e π k + ( 1 ) k + n , n = 2 , 3 , .
27: 25.11 Hurwitz Zeta Function
25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
For B ~ n ( x ) see §24.2(iii). …
25.11.14 ζ ( n , a ) = B n + 1 ( a ) n + 1 , n = 0 , 1 , 2 , .
25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
25.11.34 n 0 a ζ ( 1 n , x ) d x = ζ ( n , a ) ζ ( n ) + B n + 1 B n + 1 ( a ) n ( n + 1 ) , n = 1 , 2 , , a > 0 .
28: 24.20 Tables
§24.20 Tables
29: 5.11 Asymptotic Expansions
For the Bernoulli numbers B 2 k , see §24.2(i). … where h ( ) is fixed, and B k ( h ) is the Bernoulli polynomial defined in §24.2(i). … In terms of generalized Bernoulli polynomials B n ( ) ( x ) 24.16(i)), we have for k = 0 , 1 , ,
5.11.17 G k ( a , b ) = ( a b k ) B k ( a b + 1 ) ( a ) ,
5.11.18 H k ( a , b ) = ( a b 2 k ) B 2 k ( a b + 1 ) ( a b + 1 2 ) .
30: 25.2 Definition and Expansions
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
For B 2 k see §24.2(i), and for B ~ n ( x ) see §24.2(iii). …