About the Project

Bateman-type sums

AdvancedHelp

(0.002 seconds)

21—30 of 373 matching pages

21: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
The double sums in (22.12.2)–(22.12.4) are convergent but not absolutely convergent, hence the order of the summations is important. …
22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
22.12.11 2 K ns ( 2 K t , k ) = n = π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m t m n τ ) ,
22.12.12 2 K ds ( 2 K t , k ) = n = ( 1 ) n π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m + n t m n τ ) ,
22: 25.8 Sums
§25.8 Sums
25.8.1 k = 2 ( ζ ( k ) 1 ) = 1 .
25.8.3 k = 0 ( s ) k ζ ( s + k ) k ! 2 s + k = ( 1 2 s ) ζ ( s ) , s 1 .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
For other sums see Prudnikov et al. (1986b, pp. 648–649), Hansen (1975, pp. 355–357), Ogreid and Osland (1998), and Srivastava and Choi (2001, Chapter 3).
23: 24.14 Sums
§24.14 Sums
24.14.2 k = 0 n ( n k ) B k B n k = ( 1 n ) B n n B n 1 .
In the following two identities, valid for n 2 , the sums are taken over all nonnegative integers j , k , with j + k + = n . … In the next identity, valid for n 4 , the sum is taken over all positive integers j , k , , m with j + k + + m = n . … For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
24: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
Euler’s Second Sum
17.5.1 ϕ 0 0 ( ; ; q , z ) = n = 0 ( 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) ;
Euler’s First Sum
Cauchy’s Sum
25: 27.4 Euler Products and Dirichlet Series
27.4.1 n = 1 f ( n ) = p ( 1 + r = 1 f ( p r ) ) ,
27.4.2 n = 1 f ( n ) = p ( 1 f ( p ) ) 1 .
27.4.3 ζ ( s ) = n = 1 n s = p ( 1 p s ) 1 , s > 1 .
27.4.4 F ( s ) = n = 1 f ( n ) n s ,
27.4.11 n = 1 σ α ( n ) n s = ζ ( s ) ζ ( s α ) , s > max ( 1 , 1 + α ) ,
26: 8.15 Sums
§8.15 Sums
8.15.1 γ ( a , λ x ) = λ a k = 0 γ ( a + k , x ) ( 1 λ ) k k ! .
8.15.2 a k = 1 ( e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) + e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) ) = ζ ( a , z + h ) + z a + 1 a + 1 + ( h 1 2 ) z a , h [ 0 , 1 ] .
27: 25.17 Physical Applications
Quantum field theory often encounters formally divergent sums that need to be evaluated by a process of regularization: for example, the energy of the electromagnetic vacuum in a confined space (Casimir–Polder effect). It has been found possible to perform such regularizations by equating the divergent sums to zeta functions and associated functions (Elizalde (1995)).
28: 12.13 Sums
§12.13 Sums
12.13.1 U ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( y ) m m ! U ( a m , x ) ,
12.13.2 U ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 ( a 1 2 m ) y m U ( a + m , x ) ,
12.13.3 V ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( a 1 2 m ) y m V ( a m , x ) ,
12.13.4 V ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 y m m ! V ( a + m , x ) .
29: 34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
30: 24.5 Recurrence Relations
24.5.1 k = 0 n 1 ( n k ) B k ( x ) = n x n 1 , n = 2 , 3 , ,
a n = k = 0 n ( n k ) b n k k + 1 ,
b n = k = 0 n ( n k ) B k a n k .
a n = k = 0 n / 2 ( n 2 k ) b n 2 k ,
b n = k = 0 n / 2 ( n 2 k ) E 2 k a n 2 k .