About the Project

Abel%E2%80%93Plana formula

AdvancedHelp

(0.002 seconds)

11—20 of 259 matching pages

11: 27.2 Functions
Table 27.2.1: Primes.
n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
12: 8.23 Statistical Applications
In queueing theory the Erlang loss function is used, which can be expressed in terms of the reciprocal of Q ( a , x ) ; see Jagerman (1974) and Cooper (1981, pp. 80, 316–319). …
13: Bibliography J
  • E. Jahnke and F. Emde (1945) Tables of Functions with Formulae and Curves. 4th edition, Dover Publications, New York.
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • F. Johansson (2012) Efficient implementation of the Hardy-Ramanujan-Rademacher formula. LMS J. Comput. Math. 15, pp. 341–359.
  • B. R. Judd (1976) Modifications of Coulombic interactions by polarizable atoms. Math. Proc. Cambridge Philos. Soc. 80 (3), pp. 535–539.
  • 14: Errata
  • Subsection 17.9(iii)

    The title of the paragraph which was previously “Gasper’s q -Analog of Clausen’s Formula” has been changed to “Gasper’s q -Analog of Clausen’s Formula (16.12.2)”.

  • Paragraph Inversion Formula (in §35.2)

    The wording was changed to make the integration variable more apparent.

  • Section 1.13

    In Equation (1.13.4), the determinant form of the two-argument Wronskian

    1.13.4 𝒲 { w 1 ( z ) , w 2 ( z ) } = det [ w 1 ( z ) w 2 ( z ) w 1 ( z ) w 2 ( z ) ] = w 1 ( z ) w 2 ( z ) w 2 ( z ) w 1 ( z )

    was added as an equality. In ¶Wronskian (in §1.13(i)), immediately below Equation (1.13.4), a sentence was added indicating that in general the n -argument Wronskian is given by 𝒲 { w 1 ( z ) , , w n ( z ) } = det [ w k ( j 1 ) ( z ) ] , where 1 j , k n . Immediately below Equation (1.13.4), a sentence was added giving the definition of the n -argument Wronskian. It is explained just above (1.13.5) that this equation is often referred to as Abel’s identity. Immediately below Equation (1.13.5), a sentence was added explaining how it generalizes for n th-order differential equations. A reference to Ince (1926, §5.2) was added.

  • Usability

    Additional keywords are being added to formulas (an ongoing project); these are visible in the associated ‘info boxes’ linked to the [Uncaptioned image] icons to the right of each formula, and provide better search capabilities.

  • Subsection 14.18(iii)

    This subsection now identifies Equations (14.18.6) and (14.18.7) as Christoffel’s Formulas.

  • 15: 36.5 Stokes Sets
    §36.5(ii) Cuspoids
    36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
    §36.5(iii) Umbilics
    16: 22.7 Landen Transformations
    17: 3.4 Differentiation
    Two-Point Formula
    Three-Point Formula
    Four-Point Formula
    Five-Point Formula
    Six-Point Formula
    18: Bibliography P
  • V. I. Pagurova (1965) An asymptotic formula for the incomplete gamma function. Ž. Vyčisl. Mat. i Mat. Fiz. 5, pp. 118–121 (Russian).
  • A. Poquérusse and S. Alexiou (1999) Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations. J. Quantit. Spec. and Rad. Trans. 62 (4), pp. 389–395.
  • J. L. Powell (1947) Recurrence formulas for Coulomb wave functions. Physical Rev. (2) 72 (7), pp. 626–627.
  • T. Prellberg and A. L. Owczarek (1995) Stacking models of vesicles and compact clusters. J. Statist. Phys. 80 (3–4), pp. 755–779.
  • 19: 12.14 The Function W ( a , x )
    §12.14(iv) Connection Formula
    Other expansions, involving cos ( 1 4 x 2 ) and sin ( 1 4 x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i a and z by x e π i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). …
    20: 10.31 Power Series