About the Project

.bob体育世界杯开幕式『世界杯佣金分红55%,咨询专员:@ky975』.n15.k2q1w9-2022年11月29日5时24分51秒h3drpznfr

AdvancedHelp

(0.003 seconds)

21—30 of 157 matching pages

21: Bibliography D
  • P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou (1999b) Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (11), pp. 1335–1425.
  • E. Dorrer (1968) Algorithm 322. F-distribution. Comm. ACM 11 (2), pp. 116–117.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • B. Dubrovin and M. Mazzocco (2000) Monodromy of certain Painlevé-VI transcendents and reflection groups. Invent. Math. 141 (1), pp. 55–147.
  • J. Dutka (1981) The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24 (1), pp. 1129.
  • 22: Bibliography B
  • R. Barakat (1961) Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comp. 15 (73), pp. 7–11.
  • A. O. Barut and L. Girardello (1971) New “coherent” states associated with non-compact groups. Comm. Math. Phys. 21 (1), pp. 41–55.
  • B. C. Berndt, S. Bhargava, and F. G. Garvan (1995) Ramanujan’s theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc. 347 (11), pp. 4163–4244.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • R. L. Bishop (1981) Rainbow over Woolsthorpe Manor. Notes and Records Roy. Soc. London 36 (1), pp. 3–11 (1 plate).
  • 23: 8.21 Generalized Sine and Cosine Integrals
    8.21.4 si ( a , z ) = z t a 1 sin t d t , a < 1 ,
    8.21.5 ci ( a , z ) = z t a 1 cos t d t , a < 1 ,
    8.21.18 f ( a , z ) = si ( a , z ) cos z ci ( a , z ) sin z ,
    8.21.22 f ( a , z ) = 0 sin t ( t + z ) 1 a d t ,
    8.21.23 g ( a , z ) = 0 cos t ( t + z ) 1 a d t .
    24: 10.12 Generating Function and Associated Series
    For z and t { 0 } , …
    25: 22.15 Inverse Functions
    Comprehensive treatments are given by Carlson (2005), Lawden (1989, pp. 52–55), Bowman (1953, Chapter IX), and Erdélyi et al. (1953b, pp. 296–301). …
    26: Bibliography M
  • D. A. MacDonald (1997) On the computation of zeroes of J n ( z ) i J n + 1 ( z ) = 0 . Quart. Appl. Math. 55 (4), pp. 623–633.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • L. Moser and M. Wyman (1958b) Stirling numbers of the second kind. Duke Math. J. 25 (1), pp. 29–43.
  • D. Müller, B. G. Kelly, and J. J. O’Brien (1994) Spheroidal eigenfunctions of the tidal equation. Phys. Rev. Lett. 73 (11), pp. 1557–1560.
  • L. A. Muraveĭ (1976) Zeros of the function A i ( z ) σ A i ( z ) . Differential Equations 11, pp. 797–811.
  • 27: 4.24 Inverse Trigonometric Functions: Further Properties
    4.24.13 Arcsin u ± Arcsin v = Arcsin ( u ( 1 v 2 ) 1 / 2 ± v ( 1 u 2 ) 1 / 2 ) ,
    4.24.14 Arccos u ± Arccos v = Arccos ( u v ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) ,
    4.24.15 Arctan u ± Arctan v = Arctan ( u ± v 1 u v ) ,
    4.24.16 Arcsin u ± Arccos v = Arcsin ( u v ± ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) = Arccos ( v ( 1 u 2 ) 1 / 2 u ( 1 v 2 ) 1 / 2 ) ,
    4.24.17 Arctan u ± Arccot v = Arctan ( u v ± 1 v u ) = Arccot ( v u u v ± 1 ) .
    28: 24.13 Integrals
    For other integrals see Prudnikov et al. (1990, pp. 55–57).
    29: 10 Bessel Functions
    30: 8.2 Definitions and Basic Properties