About the Project

.bob%E4%BD%93%E8%82%B2%E4%B8%96%E7%95%8C%E6%9D%AF%E5%BC%80%E5%B9%95%E5%BC%8F%E3%80%8E%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BD%A3%E9%87%91%E5%88%86%E7%BA%A255%25%EF%BC%8C%E5%92%A8%E8%AF%A2%E4%B8%93%E5%91%98%EF%BC%9A%40ky975%E3%80%8F.n15.k2q1w9-2022%E5%B9%B411%E6%9C%8829%E6%97%A55%E6%97%B624%E5%88%8651%E7%A7%92h3drpznfr

AdvancedHelp

(0.035 seconds)

11—20 of 620 matching pages

11: 33.16 Connection Formulas
§33.16(i) F and G in Terms of f and h
where C ( η ) is given by (33.2.5) or (33.2.6).
§33.16(ii) f and h in Terms of F and G when ϵ > 0
and again define A ( ϵ , ) by (33.14.11) or (33.14.12). … and again define A ( ϵ , ) by (33.14.11) or (33.14.12). …
12: Bibliography C
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • B. C. Carlson (1977a) Elliptic integrals of the first kind. SIAM J. Math. Anal. 8 (2), pp. 231–242.
  • C. W. Clark (1979) Coulomb phase shift. American Journal of Physics 47 (8), pp. 683–684.
  • C. W. Clenshaw, F. W. J. Olver, and P. R. Turner (1989) Level-Index Arithmetic: An Introductory Survey. In Numerical Analysis and Parallel Processing (Lancaster, 1987), P. R. Turner (Ed.), Lecture Notes in Math., Vol. 1397, pp. 95–168.
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • 13: Bibliography S
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 8795.
  • R. Sips (1949) Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales. Trans. Amer. Math. Soc. 66 (1), pp. 93–134 (French).
  • R. Spigler, M. Vianello, and F. Locatelli (1999) Liouville-Green-Olver approximations for complex difference equations. J. Approx. Theory 96 (2), pp. 301–322.
  • 14: 27.12 Asymptotic Formulas: Primes
    27.12.7 | π ( x ) li ( x ) | < 1 8 π x ln x .
    The largest known prime (2018) is the Mersenne prime 2 82 , 589 , 933 1 . …
    15: 1.14 Integral Transforms
    In this subsection we let F ( x ) = ( f ) ( x ) . If f ( t ) is absolutely integrable on ( , ) , then F ( x ) is continuous, F ( x ) 0 as x ± , and … If f ( t ) and g ( t ) are absolutely integrable on ( , ) , then so is ( f g ) ( t ) , and its Fourier transform is F ( x ) G ( x ) , where G ( x ) is the Fourier transform of g ( t ) . … If f ( t ) and g ( t ) are continuous and absolutely integrable on ( , ) , and F ( x ) = G ( x ) for all x , then f ( t ) = g ( t ) for all t . … In this subsection we let F c ( x ) = c f ( x ) , F s ( x ) = s f ( x ) , G c ( x ) = c g ( x ) , and G s ( x ) = s g ( x ) . …
    16: 33.17 Recurrence Relations and Derivatives
    17: 26.10 Integer Partitions: Other Restrictions
    p ( 𝒟 , n ) denotes the number of partitions of n into distinct parts. p m ( 𝒟 , n ) denotes the number of partitions of n into at most m distinct parts. p ( 𝒟 k , n ) denotes the number of partitions of n into parts with difference at least k . …If more than one restriction applies, then the restrictions are separated by commas, for example, p ( 𝒟 2 , T , n ) . … Note that p ( 𝒟 3 , n ) p ( 𝒟 3 , n ) , with strict inequality for n 9 . …
    18: 6.7 Integral Representations
    6.7.1 0 e a t t + b d t = 0 e i a t t + i b d t = e a b E 1 ( a b ) , a > 0 , b > 0 ,
    6.7.3 x e i t a 2 + t 2 d t = i 2 a ( e a E 1 ( a i x ) e a E 1 ( a i x ) ) , a > 0 , x > 0 ,
    6.7.4 x t e i t a 2 + t 2 d t = 1 2 ( e a E 1 ( a i x ) + e a E 1 ( a i x ) ) , a > 0 , x > 0 .
    Many integrals with exponentials and rational functions, for example, integrals of the type e z R ( z ) d z , where R ( z ) is an arbitrary rational function, can be represented in finite form in terms of the function E 1 ( z ) and elementary functions; see Lebedev (1965, p. 42). … For collections of integral representations see Bierens de Haan (1939, pp. 56–59, 72–73, 82–84, 121, 133–136, 155, 179–181, 223, 225–227, 230, 259–260, 374, 377, 397–398, 408, 416, 424, 431, 438–439, 442–444, 488, 496–500, 567–571, 585, 602, 638, 675–677), Corrington (1961), Erdélyi et al. (1954a, vol. 1, pp. 267–270), Geller and Ng (1969), Nielsen (1906b), Oberhettinger (1974, pp. 244–246), Oberhettinger and Badii (1973, pp. 364–371), and Watrasiewicz (1967).
    19: 10.32 Integral Representations
    10.32.19 K μ ( z ) K ν ( z ) = 1 8 π i c i c + i Γ ( t + 1 2 μ + 1 2 ν ) Γ ( t + 1 2 μ 1 2 ν ) Γ ( t 1 2 μ + 1 2 ν ) Γ ( t 1 2 μ 1 2 ν ) Γ ( 2 t ) ( 1 2 z ) 2 t d t , c > 1 2 ( | μ | + | ν | ) , | ph z | < 1 2 π .
    20: Bibliography G
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • G. Gasper and M. Rahman (2004) Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge.
  • W. Gautschi (1964b) Algorithm 236: Bessel functions of the first kind. Comm. ACM 7 (8), pp. 479–480.
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • W. Gautschi (1967) Computational aspects of three-term recurrence relations. SIAM Rev. 9 (1), pp. 24–82.