About the Project

.韩国兰芝岛世界杯公园_『网址:68707.vip』篮球世界杯竞猜_b5p6v3_pr7bnb1nb.com

AdvancedHelp

(0.005 seconds)

21—30 of 765 matching pages

21: 16.19 Identities
16.19.1 G p , q m , n ( 1 z ; a 1 , , a p b 1 , , b q ) = G q , p n , m ( z ; 1 b 1 , , 1 b q 1 a 1 , , 1 a p ) ,
16.19.2 z μ G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ( z ; a 1 + μ , , a p + μ b 1 + μ , , b q + μ ) ,
16.19.3 G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q , a 0 ) = G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
16.19.5 ϑ G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ( z ; a 1 1 , a 2 , , a p b 1 , , b q ) + ( a 1 1 ) G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
16.19.6 0 1 t a 0 ( 1 t ) a 0 b q + 1 1 G p , q m , n ( z t ; a 1 , , a p b 1 , , b q ) d t = Γ ( a 0 b q + 1 ) G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q + 1 ) ,
22: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
§17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
17.5.1 ϕ 0 0 ( ; ; q , z ) = n = 0 ( 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) ;
23: 16.8 Differential Equations
is a value z 0 of z at which all the coefficients f j ( z ) , j = 0 , 1 , , n 1 , are analytic. If z 0 is not an ordinary point but ( z z 0 ) n j f j ( z ) , j = 0 , 1 , , n 1 , are analytic at z = z 0 , then z 0 is a regular singularity. … where α j and β j are constants. … where indicates that the entry 1 + b j b j is omitted. … where indicates that the entry 1 a j + a j is omitted. …
24: 16.2 Definition and Analytic Properties
Throughout this chapter it is assumed that none of the bottom parameters b 1 , b 2 , , b q is a nonpositive integer, unless stated otherwise. Then formally …Equivalently, the function is denoted by F q p ( 𝐚 𝐛 ; z ) or F q p ( 𝐚 ; 𝐛 ; z ) , and sometimes, for brevity, by F q p ( z ) . … Suppose first one or more of the top parameters a j is a nonpositive integer. … See §16.5 for the definition of F q p ( 𝐚 ; 𝐛 ; z ) as a contour integral when p > q + 1 and none of the a k is a nonpositive integer. … When p q + 1 and z is fixed and not a branch point, any branch of 𝐅 q p ( 𝐚 ; 𝐛 ; z ) is an entire function of each of the parameters a 1 , , a p , b 1 , , b q .
25: 16.6 Transformations of Variable
16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
26: 17.9 Further Transformations of ϕ r r + 1 Functions
§17.9(i) ϕ 1 2 ϕ 2 2 , ϕ 1 3 , or ϕ 2 3
§17.9(ii) ϕ 2 3 ϕ 2 3
Transformations of ϕ 2 3 -Series
§17.9(iii) Further ϕ s r Functions
Sears’ Balanced ϕ 3 4 Transformations
27: 10.63 Recurrence Relations and Derivatives
§10.63(i) ber ν x , bei ν x , ker ν x , kei ν x
Let f ν ( x ) , g ν ( x ) denote any one of the ordered pairs:
ber ν x , bei ν x ;
bei ν x , ber ν x ;
ker ν x , kei ν x ;
28: 17.12 Bailey Pairs
β n = j = 0 n α j u n j v n + j ,
γ n = j = n δ j u j n v j + n .
A sequence of pairs of rational functions of several variables ( α n , β n ) , n = 0 , 1 , 2 , , is called a Bailey pair provided that for each n 0 If ( α n , β n ) is a Bailey pair, then … If ( α n , β n ) is a Bailey pair, then so is ( α n , β n ) , where …
29: 3.6 Linear Difference Equations
Given numerical values of w 0 and w 1 , the solution w n of the equation …These errors have the effect of perturbing the solution by unwanted small multiples of w n and of an independent solution g n , say. … The unwanted multiples of g n now decay in comparison with w n , hence are of little consequence. … The latter method is usually superior when the true value of w 0 is zero or pathologically small. … beginning with e 0 = w 0 . …
30: 23.7 Quarter Periods
23.7.1 ( 1 2 ω 1 ) = e 1 + ( e 1 e 3 ) ( e 1 e 2 ) = e 1 + ω 1 2 ( K ( k ) ) 2 k ,
23.7.2 ( 1 2 ω 2 ) = e 2 i ( e 1 e 2 ) ( e 2 e 3 ) = e 2 i ω 1 2 ( K ( k ) ) 2 k k ,
23.7.3 ( 1 2 ω 3 ) = e 3 ( e 1 e 3 ) ( e 2 e 3 ) = e 3 ω 1 2 ( K ( k ) ) 2 k ,