About the Project

.韩国兰芝岛世界杯公园_『网址:687.vii』篮球世界杯竞猜_b5p6v3_pr7bnb1nb.com

AdvancedHelp

(0.005 seconds)

11—20 of 773 matching pages

11: 32.7 Bäcklund Transformations
satisfies P V  with …
§32.7(vii) Sixth Painlevé Equation
Let w j ( z j ) = w j ( z j ; α j , β j , γ j , δ j ) , j = 0 , 1 , 2 , 3 , be solutions of P VI  with … P VI  also has quadratic and quartic transformations. …Also, …
12: Bibliography Q
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • 13: 8.17 Incomplete Beta Functions
    For a historical profile of B x ( a , b ) see Dutka (1981). … where …The 4 m and 4 m + 1 convergents are less than I x ( a , b ) , and the 4 m + 2 and 4 m + 3 convergents are greater than I x ( a , b ) . … For x > ( a + 1 ) / ( a + b + 2 ) or 1 x < ( b + 1 ) / ( a + b + 2 ) , more rapid convergence is obtained by computing I 1 x ( b , a ) and using (8.17.4). …
    §8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
    14: Bibliography T
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • E. C. Titchmarsh (1962b) The Theory of Functions. 2nd edition, Oxford University Press, Oxford.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • 15: 12.10 Uniform Asymptotic Expansions for Large Parameter
    These cases are treated in §§12.10(vii)12.10(viii). … Higher polynomials u s ( t ) can be calculated from the recurrence relation …and the v s ( t ) then follow from …
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    The coefficients A s ( ζ ) and B s ( ζ ) are given by …
    16: 28.4 Fourier Series
    §28.4(vii) Asymptotic Forms for Large m
    28.4.24 A 2 m 2 n ( q ) A 0 2 n ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m π ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n ( q ) , q ) ,
    28.4.25 A 2 m + 1 2 n + 1 ( q ) A 1 2 n + 1 ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n + 1 ( q ) , q ) ,
    28.4.26 B 2 m + 1 2 n + 1 ( q ) B 1 2 n + 1 ( q ) = ( 1 ) m ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 1 ( q ) , q ) ,
    For the basic solutions w I and w II see §28.2(ii).
    17: 11.10 Anger–Weber Functions
    The Anger function 𝐉 ν ( z ) and Weber function 𝐄 ν ( z ) are defined by … The associated Anger–Weber function 𝐀 ν ( z ) is defined by …
    §11.10(vii) Special Values
    11.10.26 𝐄 0 ( z ) = 𝐇 0 ( z ) , 𝐄 1 ( z ) = 2 π 𝐇 1 ( z ) .
    11.10.29 𝐉 n ( z ) = J n ( z ) , n .
    18: 1.15 Summability Methods
    f ( t ) d t is Abel summable to L , or … f ( t ) d t is (C,1) summable to L , or … If f ( t ) d t converges and equals L , then the integral is Abel and Cesàro summable to L . …
    §1.15(vii) Fractional Derivatives
    and either | a n | K or a n 0 , then …
    19: 13.2 Definitions and Basic Properties
    §13.2(vii) Connection Formulas
    13.2.39 M ( a , b , z ) = e z M ( b a , b , z ) ,
    13.2.40 U ( a , b , z ) = z 1 b U ( a b + 1 , 2 b , z ) .
    13.2.41 1 Γ ( b ) M ( a , b , z ) = e a π i Γ ( b a ) U ( a , b , z ) + e ± ( b a ) π i Γ ( a ) e z U ( b a , b , e ± π i z ) .
    13.2.42 U ( a , b , z ) = Γ ( 1 b ) Γ ( a b + 1 ) M ( a , b , z ) + Γ ( b 1 ) Γ ( a ) z 1 b M ( a b + 1 , 2 b , z ) .
    20: 34.3 Basic Properties: 3 j Symbol
    When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example, …
    §34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
    For the polynomials P l see §18.3, and for the function Y l , m see §14.30. …