About the Project

.%E9%A3%9E%E9%B8%9F%E6%8E%92%E9%98%9F%E8%91%A1%E8%90%84%E7%89%99%E7%90%83%E9%98%9F%E7%BD%91%E5%9D%80%E3%80%8E%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BD%A3%E9%87%91%E5%88%86%E7%BA%A255%25%EF%BC%8C%E5%92%A8%E8%AF%A2%E4%B8%93%E5%91%98%EF%BC%9A%40ky975%E3%80%8F.wag.k2q1w9-2022%E5%B9%B411%E6%9C%8829%E6%97%A54%E6%97%B650%E5%88%8613%E7%A7%922a0qaemoo

AdvancedHelp

(0.050 seconds)

11—20 of 625 matching pages

11: 34.13 Methods of Computation
Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 9799); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). For 9 j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
12: 34.9 Graphical Method
§34.9 Graphical Method
For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
13: 34.10 Zeros
Such zeros are called nontrivial zeros. For further information, including examples of nontrivial zeros and extensions to 9 j symbols, see Srinivasa Rao and Rajeswari (1993, pp. 133–215, 294–295, 299–310).
14: 34.7 Basic Properties: 9 j Symbol
§34.7 Basic Properties: 9 j Symbol
§34.7(ii) Symmetry
§34.7(iv) Orthogonality
§34.7(vi) Sums
It constitutes an addition theorem for the 9 j symbol. …
15: 19.9 Inequalities
Further inequalities for K ( k ) and E ( k ) can be found in Alzer and Qiu (2004), Anderson et al. (1992a, b, 1997), and Qiu and Vamanamurthy (1996). … Even for the extremely eccentric ellipse with a = 99 and b = 1 , this is correct within 0. … Sharper inequalities for F ( ϕ , k ) are: … Inequalities for both F ( ϕ , k ) and E ( ϕ , k ) involving inverse circular or inverse hyperbolic functions are given in Carlson (1961b, §4). … Other inequalities for F ( ϕ , k ) can be obtained from inequalities for R F ( x , y , z ) given in Carlson (1966, (2.15)) and Carlson (1970) via (19.25.5).
16: 19.5 Maclaurin and Related Expansions
where F 1 2 is the Gauss hypergeometric function (§§15.1 and 15.2(i)). …where F 1 ( α ; β , β ; γ ; x , y ) is an Appell function (§16.13). … Coefficients of terms up to λ 49 are given in Lee (1990), along with tables of fractional errors in K ( k ) and E ( k ) , 0.1 k 2 0.9999 , obtained by using 12 different truncations of (19.5.6) in (19.5.8) and (19.5.9). … Series expansions of F ( ϕ , k ) and E ( ϕ , k ) are surveyed and improved in Van de Vel (1969), and the case of F ( ϕ , k ) is summarized in Gautschi (1975, §1.3.2). For series expansions of Π ( ϕ , α 2 , k ) when | α 2 | < 1 see Erdélyi et al. (1953b, §13.6(9)). …
17: 24.16 Generalizations
For = 0 , 1 , 2 , , Bernoulli and Euler polynomials of order are defined respectively by … When x = 0 they reduce to the Bernoulli and Euler numbers of order : …
E n ( ) = E n ( ) ( 0 ) .
24.16.13 E n ( x ) = 2 1 n n + 1 B n + 1 , χ 4 ( 2 x 1 ) .
18: 34.1 Special Notation
2 j 1 , 2 j 2 , 2 j 3 , 2 l 1 , 2 l 2 , 2 l 3 nonnegative integers.
The main functions treated in this chapter are the Wigner 3 j , 6 j , 9 j symbols, respectively, … For other notations for 3 j , 6 j , 9 j symbols, see Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich et al. (1988, §§8.11, 9.10, 10.10).
19: 9.4 Maclaurin Series
9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
20: Software Index