About the Project

.%E9%9F%A9%E5%9B%BD%E5%85%B0%E8%8A%9D%E5%B2%9B%E4%B8%96%E7%95%8C%E6%9D%AF%E5%85%AC%E5%9B%AD_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E7%AF%AE%E7%90%83%E4%B8%96%E7%95%8C%E6%9D%AF%E7%AB%9E%E7%8C%9C_b5p6v3_pr7bnb1nb.com

AdvancedHelp

(0.075 seconds)

21—30 of 848 matching pages

21: 10 Bessel Functions
22: 23 Weierstrass Elliptic and Modular
Functions
23: 19.5 Maclaurin and Related Expansions
where F 1 2 is the Gauss hypergeometric function (§§15.1 and 15.2(i)). …where F 1 ( α ; β , β ; γ ; x , y ) is an Appell function (§16.13). … Coefficients of terms up to λ 49 are given in Lee (1990), along with tables of fractional errors in K ( k ) and E ( k ) , 0.1 k 2 0.9999 , obtained by using 12 different truncations of (19.5.6) in (19.5.8) and (19.5.9). … Series expansions of F ( ϕ , k ) and E ( ϕ , k ) are surveyed and improved in Van de Vel (1969), and the case of F ( ϕ , k ) is summarized in Gautschi (1975, §1.3.2). For series expansions of Π ( ϕ , α 2 , k ) when | α 2 | < 1 see Erdélyi et al. (1953b, §13.6(9)). …
24: 34.8 Approximations for Large Parameters
§34.8 Approximations for Large Parameters
For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. …
34.8.1 { j 1 j 2 j 3 j 2 j 1 l 3 } = ( 1 ) j 1 + j 2 + j 3 + l 3 ( 4 π ( 2 j 1 + 1 ) ( 2 j 2 + 1 ) ( 2 l 3 + 1 ) sin θ ) 1 2 ( cos ( ( l 3 + 1 2 ) θ 1 4 π ) + o ( 1 ) ) , j 1 , j 2 , j 3 l 3 1 ,
Uniform approximations in terms of Airy functions for the 3 j and 6 j symbols are given in Schulten and Gordon (1975b). For approximations for the 3 j , 6 j , and 9 j symbols with error bounds see Flude (1998), Chen et al. (1999), and Watson (1999): these references also cite earlier work.
25: 7.8 Inequalities
7.8.1 𝖬 ( x ) = x e t 2 d t e x 2 = e x 2 x e t 2 d t .
7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .
The function F ( x ) / 1 e 2 x 2 is strictly decreasing for x > 0 . For these and similar results for Dawson’s integral F ( x ) see Janssen (2021). …
26: 4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.2 tan ( a z ) = a tan z 1 + ( 1 a 2 ) tan 2 z 3 + ( 4 a 2 ) tan 2 z 5 + ( 9 a 2 ) tan 2 z 7 + , | z | < 1 2 π , a z ± 1 2 π , ± 3 2 π , .
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
4.25.5 e 2 a arctan ( 1 / z ) = 1 + 2 a z a + a 2 + 1 3 z + a 2 + 4 5 z + a 2 + 9 7 z + ,
27: 19.36 Methods of Computation
For R F the polynomial of degree 7, for example, is … F ( ϕ , k ) can be evaluated by using (19.25.5). …Thompson (1997, pp. 499, 504) uses descending Landen transformations for both F ( ϕ , k ) and E ( ϕ , k ) . A summary for F ( ϕ , k ) is given in Gautschi (1975, §3). … Similarly, §19.26(ii) eases the computation of functions such as R F ( x , y , z ) when x ( > 0 ) is small compared with min ( y , z ) . …
28: 18.26 Wilson Class: Continued
Here we use as convention for (16.2.1) with b q = N , a 1 = n , and n = 0 , 1 , , N that the summation on the right-hand side ends at k = n . … For comments on the use of the forward-difference operator Δ x , the backward-difference operator x , and the central-difference operator δ x , see §18.2(ii). … See Koekoek et al. (2010, Chapter 9) for further formulas. … For the hypergeometric function F 1 2 see §§15.1 and 15.2(i). …
29: 15.12 Asymptotic Approximations
For the asymptotic behavior of 𝐅 ( a , b ; c ; z ) as z with a , b , c fixed, combine (15.2.2) with (15.8.2) or (15.8.8). …
  • (d)

    z > 1 2 and α 1 2 π + δ ph c α + + 1 2 π δ , where

    15.12.1 α ± = arctan ( ph z ph ( 1 z ) π ln | 1 z 1 | ) ,

    with z restricted so that ± α ± [ 0 , 1 2 π ) .

  • where q 0 ( z ) = 1 and q s ( z ) , s = 1 , 2 , , are defined by the generating function … For I ν ( z ) see §10.25(ii). … By combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the connection formulas of §15.10(ii), similar asymptotic approximations for F ( a + e 1 λ , b + e 2 λ ; c + e 3 λ ; z ) can be obtained with e j = ± 1 or 0 , j = 1 , 2 , 3 . …
    30: 18 Orthogonal Polynomials