About the Project

πŸ‘‰1(716)351-6210πŸ“žDelta Flights πŸͺAirlines πŸ›Έflight cancellation

AdvancedHelp

(0.003 seconds)

11—20 of 823 matching pages

11: 4.17 Special Values and Limits
β–Ί
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 ⁒ Ο€ .
β–Ί β–Ίβ–Ίβ–Ί
θ sin ⁑ θ cos ⁑ θ tan ⁑ θ csc ⁑ θ sec ⁑ θ cot ⁑ θ
0 0 1 0 1
β–Ί
β–Ί
4.17.1 lim z 0 sin ⁑ z z = 1 ,
β–Ί
4.17.2 lim z 0 tan ⁑ z z = 1 .
β–Ί
4.17.3 lim z 0 1 cos ⁑ z z 2 = 1 2 .
12: 3.5 Quadrature
β–Ίwhere k = 1 , 2 , , n . … β–Ίwith Ξ² n > 0 , p 1 ⁒ ( x ) = 0 , and p 0 ⁒ ( x ) = 1 . …with q 1 ⁒ ( x ) = 0 , and q 0 ⁒ ( x ) = 1 / h 0 . … β–ΊWe choose s = 1 so that f ⁒ ( ΞΆ ) = O ⁑ ( 1 ) at infinity. … β–Ίwith saddle point at t = 1 , and when c = 1 the vertical path intersects the real axis at the saddle point. …
13: 13.29 Methods of Computation
β–ΊIn the sector | ph ⁑ z | < 1 2 ⁒ Ο€ the integration has to be towards the origin, with starting values computed from asymptotic expansions (§§13.7 and 13.19). On the rays ph ⁑ z = ± 1 2 ⁒ Ο€ , integration can proceed in either direction. … β–Ί
Example 1
β–ΊWe assume 2 ⁒ ΞΌ 1 , 2 , 3 , . … β–ΊWe assume a , a + 1 b 0 , 1 , 2 , . …
14: 18.31 Bernstein–SzegΕ‘ Polynomials
β–ΊLet ρ ⁑ ( x ) be a polynomial of degree β„“ and positive when 1 x 1 . The Bernstein–SzegΕ‘ polynomials { p n ⁑ ( x ) } , n = 0 , 1 , , are orthogonal on ( 1 , 1 ) with respect to three types of weight function: ( 1 x 2 ) 1 2 ⁒ ( ρ ⁑ ( x ) ) 1 , ( 1 x 2 ) 1 2 ⁒ ( ρ ⁑ ( x ) ) 1 , ( 1 x ) 1 2 ⁒ ( 1 + x ) 1 2 ⁒ ( ρ ⁑ ( x ) ) 1 . In consequence, p n ⁑ ( cos ⁑ ΞΈ ) can be given explicitly in terms of ρ ⁑ ( cos ⁑ ΞΈ ) and sines and cosines, provided that β„“ < 2 ⁒ n in the first case, β„“ < 2 ⁒ n + 2 in the second case, and β„“ < 2 ⁒ n + 1 in the third case. …
15: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
β–ΊFor k = 0 , 1 , the multinomial coefficient is defined to be 1 . … β–Ί M 1 is the multinominal coefficient (26.4.2): … M 2 is the number of permutations of { 1 , 2 , , n } with a 1 cycles of length 1, a 2 cycles of length 2, , and a n cycles of length n : … M 3 is the number of set partitions of { 1 , 2 , , n } with a 1 subsets of size 1, a 2 subsets of size 2, , and a n subsets of size n : …For each n all possible values of a 1 , a 2 , , a n are covered. …
16: 34.5 Basic Properties: 6 ⁒ j Symbol
β–ΊIf any lower argument in a 6 ⁒ j symbol is 0 , 1 2 , or 1 , then the 6 ⁒ j symbol has a simple algebraic form. … β–Ί
34.5.4 { j 1 j 2 j 3 1 j 3 1 j 2 1 } = ( 1 ) J ⁒ ( J ⁒ ( J + 1 ) ⁒ ( J 2 ⁒ j 1 ) ⁒ ( J 2 ⁒ j 1 1 ) ( 2 ⁒ j 2 1 ) ⁒ 2 ⁒ j 2 ⁒ ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ j 3 1 ) ⁒ 2 ⁒ j 3 ⁒ ( 2 ⁒ j 3 + 1 ) ) 1 2 ,
β–Ί
34.5.11 ( 2 ⁒ j 1 + 1 ) ⁒ ( ( J 3 + J 2 J 1 ) ⁒ ( L 3 + L 2 J 1 ) 2 ⁒ ( J 3 ⁒ L 3 + J 2 ⁒ L 2 J 1 ⁒ L 1 ) ) ⁒ { j 1 j 2 j 3 l 1 l 2 l 3 } = j 1 ⁒ E ⁑ ( j 1 + 1 ) ⁒ { j 1 + 1 j 2 j 3 l 1 l 2 l 3 } + ( j 1 + 1 ) ⁒ E ⁑ ( j 1 ) ⁒ { j 1 1 j 2 j 3 l 1 l 2 l 3 } ,
β–Ί
34.5.18 j ( 1 ) j 1 + j 2 + j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 1 j 2 j j 2 j 1 j } = ( 2 ⁒ j 1 + 1 ) ⁒ ( 2 ⁒ j 2 + 1 ) ⁒ δ j , 0 ,
β–Ί
34.5.22 l ( 1 ) l + j + j 1 + j 2 ⁒ 1 l ⁒ ( l + 1 ) ⁒ { j 1 j 2 l j 2 j 1 j } = 1 j 1 ⁒ ( j 1 + 1 ) j 2 ⁒ ( j 2 + 1 ) ⁒ ( ( 2 ⁒ j 1 j ) ! ⁒ ( 2 ⁒ j 2 + j + 1 ) ! ( 2 ⁒ j 2 j ) ! ⁒ ( 2 ⁒ j 1 + j + 1 ) ! ) 1 2 , j 2 < j 1 .
17: 24.20 Tables
β–ΊAbramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ⁒ ( 1 ) ⁒ 100 , n = 1 ⁒ ( 1 ) ⁒ 10 ; k = 1 k n , k = 1 ( 1 ) k 1 ⁒ k n , k = 0 ( 2 ⁒ k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ⁒ ( 2 ⁒ k + 1 ) n , n = 1 , 2 , , 18D. … β–ΊFor information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
18: 10.10 Continued Fractions
β–ΊAssume J Ξ½ 1 ⁑ ( z ) 0 . … β–Ί
10.10.1 J Ξ½ ⁑ ( z ) J Ξ½ 1 ⁑ ( z ) = 1 2 ⁒ Ξ½ ⁒ z 1 1 2 ⁒ ( Ξ½ + 1 ) ⁒ z 1 1 2 ⁒ ( Ξ½ + 2 ) ⁒ z 1 β‹― , z 0 ,
β–Ί
10.10.2 J Ξ½ ⁑ ( z ) J Ξ½ 1 ⁑ ( z ) = 1 2 ⁒ z / Ξ½ 1 1 4 ⁒ z 2 / ( Ξ½ ⁒ ( Ξ½ + 1 ) ) 1 1 4 ⁒ z 2 / ( ( Ξ½ + 1 ) ⁒ ( Ξ½ + 2 ) ) 1 β‹― , Ξ½ 0 , 1 , 2 , .
19: 10.33 Continued Fractions
β–ΊAssume I Ξ½ 1 ⁑ ( z ) 0 . … β–Ί
10.33.1 I Ξ½ ⁑ ( z ) I Ξ½ 1 ⁑ ( z ) = 1 2 ⁒ Ξ½ ⁒ z 1 + ⁒ 1 2 ⁒ ( Ξ½ + 1 ) ⁒ z 1 + ⁒ 1 2 ⁒ ( Ξ½ + 2 ) ⁒ z 1 + ⁒ β‹― , z 0 ,
β–Ί
10.33.2 I Ξ½ ⁑ ( z ) I Ξ½ 1 ⁑ ( z ) = 1 2 ⁒ z / Ξ½ 1 + ⁒ 1 4 ⁒ z 2 / ( Ξ½ ⁒ ( Ξ½ + 1 ) ) 1 + ⁒ 1 4 ⁒ z 2 / ( ( Ξ½ + 1 ) ⁒ ( Ξ½ + 2 ) ) 1 + ⁒ β‹― , Ξ½ 0 , 1 , 2 , .
20: 34.8 Approximations for Large Parameters
β–Ί
34.8.1 { j 1 j 2 j 3 j 2 j 1 l 3 } = ( 1 ) j 1 + j 2 + j 3 + l 3 ⁒ ( 4 Ο€ ⁒ ( 2 ⁒ j 1 + 1 ) ⁒ ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ l 3 + 1 ) ⁒ sin ⁑ ΞΈ ) 1 2 ⁒ ( cos ⁑ ( ( l 3 + 1 2 ) ⁒ ΞΈ 1 4 ⁒ Ο€ ) + o ⁑ ( 1 ) ) , j 1 , j 2 , j 3 ≫ l 3 ≫ 1 ,
β–Ί
34.8.2 cos ⁑ θ = j 1 ⁒ ( j 1 + 1 ) + j 2 ⁒ ( j 2 + 1 ) j 3 ⁒ ( j 3 + 1 ) 2 ⁒ j 1 ⁒ ( j 1 + 1 ) ⁒ j 2 ⁒ ( j 2 + 1 ) ,
β–Ίand the symbol o ⁑ ( 1 ) denotes a quantity that tends to zero as the parameters tend to infinity, as in §2.1(i). …