About the Project

���������������������������������V���ATV1819���e3y6

AdvancedHelp

(0.001 seconds)

21—30 of 69 matching pages

21: 5.14 Multidimensional Integrals
Let V n be the simplex: t 1 + t 2 + + t n 1 , t k 0 . …
5.14.1 V n t 1 z 1 1 t 2 z 2 1 t n z n 1 d t 1 d t 2 d t n = Γ ( z 1 ) Γ ( z 2 ) Γ ( z n ) Γ ( 1 + z 1 + z 2 + + z n ) ,
5.14.2 V n ( 1 k = 1 n t k ) z n + 1 1 k = 1 n t k z k 1 d t k = Γ ( z 1 ) Γ ( z 2 ) Γ ( z n + 1 ) Γ ( z 1 + z 2 + + z n + 1 ) .
22: 12.1 Special Notation
The main functions treated in this chapter are the parabolic cylinder functions (PCFs), also known as Weber parabolic cylinder functions: U ( a , z ) , V ( a , z ) , U ¯ ( a , z ) , and W ( a , z ) . …
23: 18.7 Interrelations and Limit Relations
18.7.5 V n ( x ) = P n ( 1 2 , 1 2 ) ( x ) / P n ( 1 2 , 1 2 ) ( 1 ) ,
18.7.6 W n ( x ) = ( 2 n + 1 ) P n ( 1 2 , 1 2 ) ( x ) / P n ( 1 2 , 1 2 ) ( 1 ) .
18.7.17 U 2 n ( x ) = W n ( 2 x 2 1 ) ,
18.7.18 T 2 n + 1 ( x ) = x V n ( 2 x 2 1 ) .
24: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
V becomes a normed linear vector space. … An inner product space V is called a Hilbert space if every Cauchy sequence { v n } in V (i. …where v V and … A Hilbert space V is separable if there is an (at most countably infinite) orthonormal set { v n } in V such that for every v V A linear operator T on a (complex) linear vector space V is a map T : V V such that …
25: 22.19 Physical Applications
where V ( x ) is the potential energy, and x ( t ) is the coordinate as a function of time t . …
22.19.5 V ( x ) = ± 1 2 x 2 ± 1 4 β x 4
Case I: V ( x ) = 1 2 x 2 + 1 4 β x 4
Case II: V ( x ) = 1 2 x 2 1 4 β x 4
Case III: V ( x ) = 1 2 x 2 + 1 4 β x 4
26: 7.25 Software
§7.25(vi) ( x ) , G ( x ) , 𝖴 ( x , t ) , 𝖵 ( x , t ) , x
27: 13.1 Special Notation
Other notations are: F 1 1 ( a ; b ; z ) 16.2(i)) and Φ ( a ; b ; z ) (Humbert (1920)) for M ( a , b , z ) ; Ψ ( a ; b ; z ) (Erdélyi et al. (1953a, §6.5)) for U ( a , b , z ) ; V ( b a , b , z ) (Olver (1997b, p. 256)) for e z U ( a , b , z ) ; Γ ( 1 + 2 μ ) κ , μ (Buchholz (1969, p. 12)) for M κ , μ ( z ) . …
28: 10.73 Physical Applications
Bessel functions of the first kind, J n ( x ) , arise naturally in applications having cylindrical symmetry in which the physics is described either by Laplace’s equation 2 V = 0 , or by the Helmholtz equation ( 2 + k 2 ) ψ = 0 . …
10.73.1 2 V = 1 r r ( r V r ) + 1 r 2 2 V ϕ 2 + 2 V z 2 = 0 ,
29: 18.6 Symmetry, Special Values, and Limits to Monomials
Table 18.6.1: Classical OP’s: symmetry and special values.
p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
V n ( x ) ( 1 ) n W n ( x ) 1 ( 1 ) n ( 1 ) n ( 2 n + 2 )
W n ( x ) ( 1 ) n V n ( x ) 2 n + 1 ( 1 ) n ( 1 ) n ( 2 n + 2 )
30: 31.15 Stieltjes Polynomials
There exist at most ( n + N 2 N 2 ) polynomials V ( z ) of degree not exceeding N 2 such that for Φ ( z ) = V ( z ) , (31.15.1) has a polynomial solution w = S ( z ) of degree n . The V ( z ) are called Van Vleck polynomials and the corresponding S ( z ) Stieltjes polynomials. … If t k is a zero of the Van Vleck polynomial V ( z ) , corresponding to an n th degree Stieltjes polynomial S ( z ) , and z 1 , z 2 , , z n 1 are the zeros of S ( z ) (the derivative of S ( z ) ), then t k is either a zero of S ( z ) or a solution of the equation
31.15.3 j = 1 N γ j t k a j + j = 1 n 1 1 t k z j = 0 .