About the Project

������������������������������/������������/������������������CXFK69���epWz5VZ

AdvancedHelp

(0.034 seconds)

31—40 of 676 matching pages

31: 10.8 Power Series
10.8.1 Y n ( z ) = ( 1 2 z ) n π k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + 2 π ln ( 1 2 z ) J n ( z ) ( 1 2 z ) n π k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.8.2 Y 0 ( z ) = 2 π ( ln ( 1 2 z ) + γ ) J 0 ( z ) + 2 π ( 1 4 z 2 ( 1 ! ) 2 ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 ) ,
10.8.3 J ν ( z ) J μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
32: 12.12 Integrals
12.12.1 0 e 1 4 t 2 t μ 1 U ( a , t ) d t = π 2 1 2 ( μ + a + 1 2 ) Γ ( μ ) Γ ( 1 2 ( μ + a + 3 2 ) ) , μ > 0 ,
12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
33: 13.19 Asymptotic Expansions for Large Argument
13.19.1 M κ , μ ( x ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 x x κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! x s , μ κ 1 2 , 3 2 , .
13.19.2 M κ , μ ( z ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 z z κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! z s + Γ ( 1 + 2 μ ) Γ ( 1 2 + μ + κ ) e 1 2 z ± ( 1 2 + μ κ ) π i z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
provided that both μ κ 1 2 , 3 2 , . …
13.19.3 W κ , μ ( z ) e 1 2 z z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , | ph z | 3 2 π δ .
34: 18.16 Zeros
except when α 2 = β 2 = 1 4 . … Then as n , with α ( > 1 2 ) and β ( 1 α ) fixed, … when α ( 1 2 , 1 2 ) . … In view of the reflection formula, given in Table 18.6.1, we may consider just the positive zeros x n , m , m = 1 , 2 , , 1 2 n . … For an asymptotic expansion of x n , m as n that applies uniformly for m = 1 , 2 , , 1 2 n , see Olver (1959, §14(i)). …
35: 15.3 Graphics
See accompanying text
Figure 15.3.1: F ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
See accompanying text
Figure 15.3.5: F ( 4 3 , 9 16 ; 14 5 ; x + i y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
See accompanying text
Figure 15.3.6: F ( 3 , 3 5 ; u + i v ; 1 2 ) , 6 u 2 , 2 v 2 . … Magnify 3D Help
See accompanying text
Figure 15.3.7: | 𝐅 ( 3 , 3 5 ; u + i v ; 1 2 ) | , 6 u 2 , 2 v 2 . Magnify 3D Help
36: 10.16 Relations to Other Functions
J 1 2 ( z ) = Y 1 2 ( z ) = ( 2 π z ) 1 2 sin z ,
J 1 4 ( z ) = 2 1 4 π 1 2 z 1 4 ( W ( 0 , 2 z 1 2 ) W ( 0 , 2 z 1 2 ) ) ,
J 1 4 ( z ) = 2 1 4 π 1 2 z 1 4 ( W ( 0 , 2 z 1 2 ) + W ( 0 , 2 z 1 2 ) ) .
J 3 4 ( z ) = 2 1 4 π 1 2 z 3 4 ( W ( 0 , 2 z 1 2 ) W ( 0 , 2 z 1 2 ) ) ,
In all cases principal branches correspond at least when | ph z | 1 2 π . …
37: 4.6 Power Series
4.6.1 ln ( 1 + z ) = z 1 2 z 2 + 1 3 z 3 , | z | 1 , z 1 ,
4.6.2 ln z = ( z 1 z ) + 1 2 ( z 1 z ) 2 + 1 3 ( z 1 z ) 3 + , z 1 2 ,
4.6.3 ln z = ( z 1 ) 1 2 ( z 1 ) 2 + 1 3 ( z 1 ) 3 , | z 1 | 1 , z 0 ,
4.6.4 ln z = 2 ( ( z 1 z + 1 ) + 1 3 ( z 1 z + 1 ) 3 + 1 5 ( z 1 z + 1 ) 5 + ) , z 0 , z 0 ,
4.6.6 ln ( z + a ) = ln a + 2 ( ( z 2 a + z ) + 1 3 ( z 2 a + z ) 3 + 1 5 ( z 2 a + z ) 5 + ) , a > 0 , z a , z a .
38: 12.8 Recurrence Relations and Derivatives
12.8.2 U ( a , z ) + 1 2 z U ( a , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.6 V ( a , z ) 1 2 z V ( a , z ) ( a 1 2 ) V ( a 1 , z ) = 0 ,
12.8.9 d m d z m ( e 1 4 z 2 U ( a , z ) ) = ( 1 ) m ( 1 2 + a ) m e 1 4 z 2 U ( a + m , z ) ,
12.8.10 d m d z m ( e 1 4 z 2 U ( a , z ) ) = ( 1 ) m e 1 4 z 2 U ( a m , z ) ,
12.8.11 d m d z m ( e 1 4 z 2 V ( a , z ) ) = e 1 4 z 2 V ( a + m , z ) ,
39: 18.31 Bernstein–Szegő Polynomials
The Bernstein–Szegő polynomials { p n ( x ) } , n = 0 , 1 , , are orthogonal on ( 1 , 1 ) with respect to three types of weight function: ( 1 x 2 ) 1 2 ( ρ ( x ) ) 1 , ( 1 x 2 ) 1 2 ( ρ ( x ) ) 1 , ( 1 x ) 1 2 ( 1 + x ) 1 2 ( ρ ( x ) ) 1 . …
40: 16.6 Transformations of Variable
16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .