About the Project

高中毕业证等级h《做证微fuk7778》100

AdvancedHelp

The term"fuk7778" was not found.Possible alternative term: "fukui".

(0.003 seconds)

1—10 of 305 matching pages

1: 11.14 Tables
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • Agrest et al. (1982) tabulates 𝐇 n ( x ) and e x 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • Zanovello (1975) tabulates 𝐇 n ( x ) for n = 4 ( 1 ) 15 and x = 0.5 ( .5 ) 26 to 8D or 9S.

  • Zhang and Jin (1996) tabulates 𝐇 n ( x ) and 𝐋 n ( x ) for n = 4 ( 1 ) 3 and x = 0 ( 1 ) 20 to 8D or 7S.

  • Agrest et al. (1982) tabulates 0 x 𝐇 0 ( t ) d t and e x 0 x 𝐋 0 ( t ) d t for x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • 2: Charles W. Clark
     H. … H. … H. … Clark received the R&D 100 Award, Distinguished Presidential Rank Award of the U. …
    3: 23.17 Elementary Properties
    η ( i ) = Γ ( 1 4 ) 2 π 3 / 4 ,
    η ( e π i / 3 ) = 3 1 / 8 ( Γ ( 1 3 ) ) 3 / 2 2 π e π i / 24 .
    23.17.6 η ( τ ) = n = ( 1 ) n q ( 6 n + 1 ) 2 / 12 .
    In (23.17.5) for terms up to q 48 see Zuckerman (1939), and for terms up to q 100 see van Wijngaarden (1953). …
    23.17.8 η ( τ ) = q 1 / 12 n = 1 ( 1 q 2 n ) ,
    4: 10.75 Tables
  • Döring (1971) tabulates the first 100 values of ν ( > 1 ) for which J ν ( x ) has the double zero x = ν , 10D.

  • Döring (1966) tabulates all zeros of Y 0 ( z ) , Y 1 ( z ) , H 0 ( 1 ) ( z ) , H 1 ( 1 ) ( z ) , that lie in the sector | z | < 158 , | ph z | π , to 10D. Some of the smaller zeros of Y n ( z ) and H n ( 1 ) ( z ) for n = 2 , 3 , 4 , 5 , 15 are also included.

  • Kerimov and Skorokhodov (1985b) tabulates 50 zeros of the principal branches of H 0 ( 1 ) ( z ) and H 1 ( 1 ) ( z ) , 8D.

  • Kerimov and Skorokhodov (1987) tabulates 100 complex double zeros ν of Y ν ( z e π i ) and H ν ( 1 ) ( z e π i ) , 8D.

  • The main tables in Abramowitz and Stegun (1964, Chapter 10) give 𝗃 n ( x ) , 𝗒 n ( x ) n = 0 ( 1 ) 8 , x = 0 ( .1 ) 10 , 5–8S; 𝗃 n ( x ) , 𝗒 n ( x ) n = 0 ( 1 ) 20 ( 10 ) 50 , 100, x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , n = 0 , 1 , 2 , x = 0 ( .1 ) 5 , 4–9D; 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100, x = 1 , 2 , 5 , 10 , 50 , 100 , 10S. (For the notation see §10.1 and §10.47(ii).)

  • 5: 33.20 Expansions for Small | ϵ |
    h ( 0 , ; r ) = ( 2 r ) 1 / 2 Y 2 + 1 ( 8 r ) , r > 0 ,
    where A ( ϵ , ) is given by (33.14.11), (33.14.12), and
    33.20.8 𝖧 k ( ; r ) = p = 2 k 3 k ( 2 r ) ( p + 1 ) / 2 C k , p Y 2 + 1 + p ( 8 r ) , r > 0 ,
    For a comprehensive collection of asymptotic expansions that cover f ( ϵ , ; r ) and h ( ϵ , ; r ) as ϵ 0 ± and are uniform in r , including unbounded values, see Curtis (1964a, §7). …
    6: 28.22 Connection Formulas
    28.22.7 g o , 2 m + 1 ( h ) = ( 1 ) m 2 π se 2 m + 1 ( 1 2 π , h 2 ) h B 1 2 m + 1 ( h 2 ) ,
    where A n m ( h 2 ) , B n m ( h 2 ) are as in §28.4(i), and C m ( h 2 ) , S m ( h 2 ) are as in §28.5(i). …
    fe m ( 0 , h 2 ) = 1 2 π C m ( h 2 ) ( g e , m ( h ) ) 2 ce m ( 0 , h 2 ) ,
    ge m ( 0 , h 2 ) = 1 2 π S m ( h 2 ) ( g o , m ( h ) ) 2 se m ( 0 , h 2 ) .
    Here me ν ( 0 , h 2 ) ( 0 ) is given by (28.14.1) with z = 0 , and M ν ( 1 ) ( 0 , h ) is given by (28.24.1) with j = 1 , z = 0 , and n chosen so that | c 2 n ν ( h 2 ) | = max ( | c 2 ν ( h 2 ) | ) , where the maximum is taken over all integers . …
    7: 10.73 Physical Applications
    See Jackson (1999, Chapter 3, §§3.7, 3.8, 3.11, 3.13), Lamb (1932, Chapter V, §§100–102; Chapter VIII, §§186, 191–193; Chapter X, §§303, 304), Happel and Brenner (1973, Chapter 3, §3.3; Chapter 7, §7.3), Korenev (2002, Chapter 4, §43), and Gray et al. (1922, Chapter XI). … The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …With the spherical harmonic Y , m ( θ , ϕ ) defined as in §14.30(i), the solutions are of the form f = g ( k ρ ) Y , m ( θ , ϕ ) with g = 𝗃 , 𝗒 , 𝗁 ( 1 ) , or 𝗁 ( 2 ) , depending on the boundary conditions. …
    8: 10.4 Connection Formulas
    Other solutions of (10.2.1) include J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) . …
    H n ( 1 ) ( z ) = ( 1 ) n H n ( 1 ) ( z ) ,
    H n ( 2 ) ( z ) = ( 1 ) n H n ( 2 ) ( z ) .
    J ν ( z ) = 1 2 ( H ν ( 1 ) ( z ) + H ν ( 2 ) ( z ) ) ,
    H ν ( 1 ) ( z ) = e ν π i H ν ( 1 ) ( z ) ,
    9: Bibliography
  • S-H. Ahn, H. Lee, and H. M. Lee (2001) Ly α line formation in starbursting galaxies. I. Moderately thick, dustless, and static H i media. Astrophysical J. 554, pp. 604–614.
  • H. Airault (1979) Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1), pp. 31–53.
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • N. I. Akhiezer (1990) Elements of the Theory of Elliptic Functions. Translations of Mathematical Monographs, Vol. 79, American Mathematical Society, Providence, RI.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • 10: 10.19 Asymptotic Expansions for Large Order
    10.19.9 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 4 3 ν 1 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 P k ( a ) ν 2 k / 3 + 2 5 3 ν e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 Q k ( a ) ν 2 k / 3 ,
    P 2 ( a ) = 9 100 a 5 + 3 35 a 2 ,
    10.19.13 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 5 3 ν 2 3 e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 R k ( a ) ν 2 k / 3 + 2 4 3 ν 4 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 S k ( a ) ν 2 k / 3 ,
    R 2 ( a ) = 9 100 a 5 + 57 70 a 2 ,