About the Project

欢乐斗地主改名字【亚博官方qee9.com】3d福彩缩水17o

AdvancedHelp

(0.004 seconds)

11—20 of 733 matching pages

11: Bibliography Z
  • F. A. Zafiropoulos, T. N. Grapsa, O. Ragos, and M. N. Vrahatis (1996) On the Computation of Zeros of Bessel and Bessel-related Functions. In Proceedings of the Sixth International Colloquium on Differential Equations (Plovdiv, Bulgaria, 1995), D. Bainov (Ed.), Utrecht, pp. 409–416.
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 1–22.
  • C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer (2012) Mathieu functions for purely imaginary parameters. J. Comput. Appl. Math. 236 (17), pp. 4513–4524.
  • A. Ziv (1991) Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Trans. Math. Software 17 (3), pp. 410–423.
  • 12: 34.8 Approximations for Large Parameters
    §34.8 Approximations for Large Parameters
    For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. … and the symbol o ( 1 ) denotes a quantity that tends to zero as the parameters tend to infinity, as in §2.1(i). … Uniform approximations in terms of Airy functions for the 3 j and 6 j symbols are given in Schulten and Gordon (1975b). For approximations for the 3 j , 6 j , and 9 j symbols with error bounds see Flude (1998), Chen et al. (1999), and Watson (1999): these references also cite earlier work.
    13: 30.16 Methods of Computation
    For d sufficiently large, construct the d × d tridiagonal matrix 𝐀 = [ A j , k ] with nonzero elements …and real eigenvalues α 1 , d , α 2 , d , , α d , d , arranged in ascending order of magnitude. … Let 𝐀 be the d × d matrix given by (30.16.1) if n m is even, or by (30.16.6) if n m is odd. Form the eigenvector [ e 1 , d , e 2 , d , , e d , d ] T of 𝐀 associated with the eigenvalue α p , d , p = 1 2 ( n m ) + 1 , normalized according to … The coefficients a n , k m ( γ 2 ) calculated in §30.16(ii) can be used to compute S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 from (30.11.3) as well as the connection coefficients K n m ( γ ) from (30.11.10) and (30.11.11). …
    14: Bibliography S
  • R. S. Scorer (1950) Numerical evaluation of integrals of the form I = x 1 x 2 f ( x ) e i ϕ ( x ) 𝑑 x and the tabulation of the function Gi ( z ) = ( 1 / π ) 0 sin ( u z + 1 3 u 3 ) 𝑑 u . Quart. J. Mech. Appl. Math. 3 (1), pp. 107–112.
  • H. Segur and M. J. Ablowitz (1981) Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent. Phys. D 3 (1-2), pp. 165–184.
  • K. M. Siegel and F. B. Sleator (1954) Inequalities involving cylindrical functions of nearly equal argument and order. Proc. Amer. Math. Soc. 5 (3), pp. 337–344.
  • D. Slepian (1983) Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25 (3), pp. 379–393.
  • O. Szász (1950) On the relative extrema of ultraspherical polynomials. Boll. Un. Mat. Ital. (3) 5, pp. 125–127.
  • 15: 34.14 Tables
    §34.14 Tables
    Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Tables of 3 j and 6 j symbols in which all parameters are 17 / 2 are given in Appel (1968) to 6D. …Other tabulations for 3 j symbols are listed on pp. … In Varshalovich et al. (1988) algebraic expressions for the Clebsch–Gordan coefficients with all parameters 5 and numerical values for all parameters 3 are given on pp. …
    16: 9.13 Generalized Airy Functions
    where m = 3 , 4 , 5 , . For real variables the solutions of (9.13.13) are denoted by U m ( t ) , U m ( t ) when m is even, and by V m ( t ) , V ¯ m ( t ) when m is odd. …
    9.13.27 B k ( z , p ) = k t p exp ( z t 1 3 t 3 ) d t , k = 1 , 2 , 3 , p = 0 , ± 1 , ± 2 , ,
    The integration paths 0 , 1 , 2 , 3 are depicted in Figure 9.13.1. 1 , 2 , 3 are depicted in Figure 9.13.2. …
    9.13.31 d 3 w d z 3 z d w d z + ( p 1 ) w = 0 ,
    17: 28.8 Asymptotic Expansions for Large q
    28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    For recurrence relations for the coefficients in these expansions see Frenkel and Portugal (2001, §3). …
    28.8.2 b m + 1 ( h 2 ) a m ( h 2 ) = 2 4 m + 5 m ! ( 2 π ) 1 / 2 h m + ( 3 / 2 ) e 4 h ( 1 6 m 2 + 14 m + 7 32 h + O ( 1 h 2 ) ) .
    Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). …
    σ m 1 + s 2 3 h + 4 s 2 + 3 2 7 h 2 + 19 s 3 + 59 s 2 11 h 3 + ,
    18: 32.11 Asymptotic Approximations for Real Variables
    and d and θ 0 are constants. …
  • (c)

    If k 2 < k , then w ( x ) changes sign once, from positive to negative, as x passes from x 0 to 0 .

  • Connection formulas for d and θ 0 are given by … Connection formulas for d and θ 0 are given by … In terms of the parameter k that is used in these figures h = 2 3 / 2 k 2 . …
    19: 25.16 Mathematical Applications
    25.16.6 H ( s ) = ζ ( s ) + γ ζ ( s ) + 1 2 ζ ( s + 1 ) + r = 1 k ζ ( 1 2 r ) ζ ( s + 2 r ) + n = 1 1 n s n B ~ 2 k + 1 ( x ) x 2 k + 2 d x ,
    H ( 2 ) = 2 ζ ( 3 ) ,
    H ( 3 ) = 5 4 ζ ( 4 ) ,
    H ( s ) has a simple pole with residue ζ ( 1 2 r ) ( = B 2 r / ( 2 r ) ) at each odd negative integer s = 1 2 r , r = 1 , 2 , 3 , . …
    25.16.15 r = 1 k = 1 r 1 r 2 ( r + k ) = 3 4 ζ ( 3 ) .
    20: 19.27 Asymptotic Approximations and Expansions
    §19.27(iv) R D ( x , y , z )
    19.27.7 R D ( x , y , z ) = 3 2 z 3 / 2 ( ln ( 8 z a + g ) 2 ) ( 1 + O ( a z ) ) , a / z 0 .
    19.27.8 R D ( x , y , z ) = 3 x y z 6 x y R G ( x , y , 0 ) ( 1 + O ( z g ) ) , z / g 0 .
    19.27.9 R D ( x , y , z ) = 3 x z ( y + z ) ( 1 + O ( b x ln x b ) ) , b / x 0 .
    19.27.10 R D ( x , y , z ) = R D ( 0 , y , z ) 3 x h z ( 1 + O ( x h ) ) , x / h 0 .