About the Project

布莱辛-里曼护理学院文凭办理【somewhat微aptao168】2MHDhB

AdvancedHelp

(0.004 seconds)

11—20 of 802 matching pages

11: 34.3 Basic Properties: 3 j Symbol
When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example, …
34.3.13 ( ( j 1 + j 2 + j 3 + 1 ) ( j 1 + j 2 + j 3 ) ) 1 2 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( ( j 2 + m 2 ) ( j 3 m 3 ) ) 1 2 ( j 1 j 2 1 2 j 3 1 2 m 1 m 2 1 2 m 3 + 1 2 ) ( ( j 2 m 2 ) ( j 3 + m 3 ) ) 1 2 ( j 1 j 2 1 2 j 3 1 2 m 1 m 2 + 1 2 m 3 1 2 ) ,
34.3.15 ( 2 j 1 + 1 ) ( ( j 2 ( j 2 + 1 ) j 3 ( j 3 + 1 ) ) m 1 j 1 ( j 1 + 1 ) ( m 3 m 2 ) ) ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 1 + 1 ) ( j 1 2 ( j 2 j 3 ) 2 ) 1 2 ( ( j 2 + j 3 + 1 ) 2 j 1 2 ) 1 2 ( j 1 2 m 1 2 ) 1 2 ( j 1 1 j 2 j 3 m 1 m 2 m 3 ) + j 1 ( ( j 1 + 1 ) 2 ( j 2 j 3 ) 2 ) 1 2 ( ( j 2 + j 3 + 1 ) 2 ( j 1 + 1 ) 2 ) 1 2 ( ( j 1 + 1 ) 2 m 1 2 ) 1 2 ( j 1 + 1 j 2 j 3 m 1 m 2 m 3 ) .
12: 28.14 Fourier Series
The coefficients satisfy
28.14.4 q c 2 m + 2 ( a ( ν + 2 m ) 2 ) c 2 m + q c 2 m 2 = 0 , a = λ ν ( q ) , c 2 m = c 2 m ν ( q ) ,
28.14.5 m = ( c 2 m ν ( q ) ) 2 = 1 ;
28.14.7 c 2 m ν ( q ) = c 2 m ν ( q ) ,
28.14.8 c 2 m ν ( q ) = ( 1 ) m c 2 m ν ( q ) .
13: 30.16 Methods of Computation
and real eigenvalues α 1 , d , α 2 , d , , α d , d , arranged in ascending order of magnitude. … For m = 2 , n = 4 , γ 2 = 10 , …which yields λ 4 2 ( 10 ) = 13.97907 345 . … If λ n m ( γ 2 ) is known, then 𝖯𝗌 n m ( x , γ 2 ) can be found by summing (30.8.1). The coefficients a n , r m ( γ 2 ) are computed as the recessive solution of (30.8.4) (§3.6), and normalized via (30.8.5). …
14: 28.4 Fourier Series
For n = 0 , 1 , 2 , 3 , , …
( a 4 m 2 ) B 2 m q ( B 2 m 2 + B 2 m + 2 ) = 0 , m = 2 , 3 , 4 , , a = b 2 n + 2 ( q ) , B 2 m + 2 = B 2 m + 2 2 n + 2 ( q ) .
B 2 n + 2 2 n + 2 ( 0 ) = 1 ,
B 2 m + 2 2 n + 2 ( 0 ) = 0 , n m .
For fixed s = 1 , 2 , 3 , and fixed m = 1 , 2 , 3 , , …
15: 19.3 Graphics
See accompanying text
Figure 19.3.5: Π ( α 2 , k ) as a function of k 2 and α 2 for 2 k 2 < 1 , 2 α 2 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . Cauchy principal values are shown when sin 2 ϕ > 1 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.7: K ( k ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.8: E ( k ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.9: ( K ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . … Magnify 3D Help
16: 10.53 Power Series
10.53.1 𝗃 n ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.2 𝗒 n ( z ) = 1 z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + ( 1 ) n + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
For 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) combine (10.47.10), (10.53.1), and (10.53.2). …
17: 28.16 Asymptotic Expansions for Large q
Let s = 2 m + 1 , m = 0 , 1 , 2 , , and ν be fixed with m < ν < m + 1 . …
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
18: 28.6 Expansions for Small q
For more details on these expansions and recurrence relations for the coefficients see Frenkel and Portugal (2001, §2). The coefficients of the power series of a 2 n ( q ) , b 2 n ( q ) and also a 2 n + 1 ( q ) , b 2 n + 1 ( q ) are the same until the terms in q 2 n 2 and q 2 n , respectively. … Here j = 1 for a 2 n ( q ) , j = 2 for b 2 n + 2 ( q ) , and j = 3 for a 2 n + 1 ( q ) and b 2 n + 1 ( q ) . … where k is the unique root of the equation 2 E ( k ) = K ( k ) in the interval ( 0 , 1 ) , and k = 1 k 2 . … For more details on these expansions and recurrence relations for the coefficients see Frenkel and Portugal (2001, §2). …
19: 28.15 Expansions for Small q
28.15.1 λ ν ( q ) = ν 2 + 1 2 ( ν 2 1 ) q 2 + 5 ν 2 + 7 32 ( ν 2 1 ) 3 ( ν 2 4 ) q 4 + 9 ν 4 + 58 ν 2 + 29 64 ( ν 2 1 ) 5 ( ν 2 4 ) ( ν 2 9 ) q 6 + .
28.15.2 a ν 2 q 2 a ( ν + 2 ) 2 q 2 a ( ν + 4 ) 2 = q 2 a ( ν 2 ) 2 q 2 a ( ν 4 ) 2 .
28.15.3 me ν ( z , q ) = e i ν z q 4 ( 1 ν + 1 e i ( ν + 2 ) z 1 ν 1 e i ( ν 2 ) z ) + q 2 32 ( 1 ( ν + 1 ) ( ν + 2 ) e i ( ν + 4 ) z + 1 ( ν 1 ) ( ν 2 ) e i ( ν 4 ) z 2 ( ν 2 + 1 ) ( ν 2 1 ) 2 e i ν z ) + ;
20: 29.7 Asymptotic Expansions
p = 2 m + 1 ,
29.7.4 τ 1 = p 2 6 ( ( 1 + k 2 ) 2 ( p 2 + 3 ) 4 k 2 ( p 2 + 5 ) ) .
The same Poincaré expansion holds for b ν m + 1 ( k 2 ) , since …
29.7.6 τ 2 = 1 2 10 ( 1 + k 2 ) ( 1 k 2 ) 2 ( 5 p 4 + 34 p 2 + 9 ) ,
In Müller (1966c) it is shown how these expansions lead to asymptotic expansions for the Lamé functions 𝐸𝑐 ν m ( z , k 2 ) and 𝐸𝑠 ν m ( z , k 2 ) . …