About the Project

北达科他大学文凭毕业证怎么制作【言正 微aptao168】74b

AdvancedHelp

The term"aptao168" was not found.Possible alternative term: "caption".

(0.004 seconds)

1—10 of 517 matching pages

1: 5.12 Beta Function
In (5.12.1)–(5.12.4) it is assumed a > 0 and b > 0 . …
5.12.1 B ( a , b ) = 0 1 t a 1 ( 1 t ) b 1 d t = Γ ( a ) Γ ( b ) Γ ( a + b ) .
5.12.3 0 t a 1 d t ( 1 + t ) a + b = B ( a , b ) .
when b > 0 , a is not an integer and the contour cuts the real axis between 1 and the origin. … When a , b
2: 22.18 Mathematical Applications
with a b > 0 , is parametrized by …
y = b cn ( u , k ) ,
where k = 1 ( b 2 / a 2 ) is the eccentricity, and 0 u 4 K ( k ) . … in which a , b , c , d , e , f are real constants, can be achieved in terms of single-valued functions. … With the identification x = sn ( z , k ) , y = d ( sn ( z , k ) ) / d z , the addition law (22.18.8) is transformed into the addition theorem (22.8.1); see Akhiezer (1990, pp. 42, 45, 73–74) and McKean and Moll (1999, §§2.14, 2.16). …
3: Bibliography V
  • A. L. Van Buren, R. V. Baier, S. Hanish, and B. J. King (1972) Calculation of spheroidal wave functions. J. Acoust. Soc. Amer. 51, pp. 414–416.
  • B. L. van der Waerden (1951) On the method of saddle points. Appl. Sci. Research B. 2, pp. 33–45.
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • N. Ja. Vilenkin and A. U. Klimyk (1993) Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
  • N. Virchenko and I. Fedotova (2001) Generalized Associated Legendre Functions and their Applications. World Scientific Publishing Co. Inc., Singapore.
  • 4: Bibliography O
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • S. Okui (1975) Complete elliptic integrals resulting from infinite integrals of Bessel functions. II. J. Res. Nat. Bur. Standards Sect. B 79B (3-4), pp. 137–170.
  • A. B. Olde Daalhuis (1996) Hyperterminants. I. J. Comput. Appl. Math. 76 (1-2), pp. 255–264.
  • A. B. Olde Daalhuis (1998b) Hyperterminants. II. J. Comput. Appl. Math. 89 (1), pp. 87–95.
  • F. W. J. Olver (1964a) Error analysis of Miller’s recurrence algorithm. Math. Comp. 18 (85), pp. 65–74.
  • 5: 10.6 Recurrence Relations and Derivatives
    p ν = J ν ( a ) Y ν ( b ) J ν ( b ) Y ν ( a ) ,
    q ν = J ν ( a ) Y ν ( b ) J ν ( b ) Y ν ( a ) ,
    r ν = J ν ( a ) Y ν ( b ) J ν ( b ) Y ν ( a ) ,
    s ν = J ν ( a ) Y ν ( b ) J ν ( b ) Y ν ( a ) ,
    where a and b are independent of ν . …
    6: Bibliography
  • J. Abad and J. Sesma (1995) Computation of the regular confluent hypergeometric function. The Mathematica Journal 5 (4), pp. 74–76.
  • G. B. Airy (1838) On the intensity of light in the neighbourhood of a caustic. Trans. Camb. Phil. Soc. 6, pp. 379–402.
  • H. Alzer (2000) Sharp bounds for the Bernoulli numbers. Arch. Math. (Basel) 74 (3), pp. 207–211.
  • D. E. Amos (1983c) Uniform asymptotic expansions for exponential integrals E n ( x ) and Bickley functions Ki n ( x ) . ACM Trans. Math. Software 9 (4), pp. 467–479.
  • G. B. Arfken and H. J. Weber (2005) Mathematical Methods for Physicists. 6th edition, Elsevier, Oxford.
  • 7: Bibliography B
    Bibliography B
  • G. E. Barr (1968) A note on integrals involving parabolic cylinder functions. SIAM J. Appl. Math. 16 (1), pp. 71–74.
  • E. Berti and V. Cardoso (2006) Quasinormal ringing of Kerr black holes: The excitation factors. Phys. Rev. D 74 (104020), pp. 1–27.
  • W. G. C. Boyd (1973) The asymptotic analysis of canonical problems in high-frequency scattering theory. II. The circular and parabolic cylinders. Proc. Cambridge Philos. Soc. 74, pp. 313–332.
  • J. L. Burchnall and T. W. Chaundy (1948) The hypergeometric identities of Cayley, Orr, and Bailey. Proc. London Math. Soc. (2) 50, pp. 56–74.
  • 8: 19.29 Reduction of General Elliptic Integrals
    and assume that the line segment with endpoints a α + b α x and a α + b α y lies in ( , 0 ) for 1 α 4 . … where the arguments of the R D function are, in order, ( a b ) ( u c ) , ( b c ) ( a u ) , ( a b ) ( b c ) . … It can be expressed in terms of symmetric integrals by setting a 5 = 1 and b 5 = 0 in (19.29.8). … If both square roots in (19.29.22) are 0, then the indeterminacy in the two preceding equations can be removed by using (19.27.8) to evaluate the integral as R G ( a 1 b 2 , a 2 b 1 , 0 ) multiplied either by 2 / ( b 1 b 2 ) or by 2 / ( a 1 a 2 ) in the cases of (19.29.20) or (19.29.21), respectively. … In the cubic case, in which a 2 = 1 , b 2 = 0 , (19.29.26) reduces further to …
    9: Bibliography G
  • W. Gautschi (1993) On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Comm. 74 (2), pp. 233–238.
  • M. Geller and E. W. Ng (1971) A table of integrals of the error function. II. Additions and corrections. J. Res. Nat. Bur. Standards Sect. B 75B, pp. 149–163.
  • E. T. Goodwin (1949a) Recurrence relations for cross-products of Bessel functions. Quart. J. Mech. Appl. Math. 2 (1), pp. 72–74.
  • R. G. Gordon (1970) Constructing wavefunctions for nonlocal potentials. J. Chem. Phys. 52, pp. 6211–6217.
  • H. W. Gould (1972) Explicit formulas for Bernoulli numbers. Amer. Math. Monthly 79, pp. 44–51.
  • 10: 12.7 Relations to Other Functions
    12.7.12 u 1 ( a , z ) = e 1 4 z 2 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) = e 1 4 z 2 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) ,
    12.7.13 u 2 ( a , z ) = z e 1 4 z 2 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) = z e 1 4 z 2 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) .
    12.7.14 U ( a , z ) = 2 1 4 1 2 a e 1 4 z 2 U ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) = 2 3 4 1 2 a z e 1 4 z 2 U ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) = 2 1 2 a z 1 2 W 1 2 a , ± 1 4 ( 1 2 z 2 ) .