About the Project

办假的科罗拉多学院文凭毕业证【somewhat微aptao168】bigrf

AdvancedHelp

The term"aptao168" was not found.Possible alternative term: "caption".

(0.002 seconds)

1—10 of 28 matching pages

1: Software Index
Open Source With Book Commercial
19.39(iv) R C ( x , y ) , R F ( x , y , z ) , R D ( x , y , z ) , R J ( x , y , z , p ) a Derive
  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • 2: 19.21 Connection Formulas
    19.21.1 R F ( 0 , z + 1 , z ) R D ( 0 , z + 1 , 1 ) + R D ( 0 , z + 1 , z ) R F ( 0 , z + 1 , 1 ) = 3 π / ( 2 z ) , z ( , 0 ] .
    The complete cases of R F and R G have connection formulas resulting from those for the Gauss hypergeometric function (Erdélyi et al. (1953a, §2.9)). …
    19.21.4 R F ( 0 , z 1 , z ) = R F ( 0 , 1 z , 1 ) i R F ( 0 , z , 1 ) ,
    The complete case of R J can be expressed in terms of R F and R D : … Because R G is completely symmetric, x , y , z can be permuted on the right-hand side of (19.21.10) so that ( x z ) ( y z ) 0 if the variables are real, thereby avoiding cancellations when R G is calculated from R F and R D (see §19.36(i)). …
    3: 19.32 Conformal Map onto a Rectangle
    19.32.1 z ( p ) = R F ( p x 1 , p x 2 , p x 3 ) ,
    z ( x 1 ) = R F ( 0 , x 1 x 2 , x 1 x 3 ) ( > 0 ) ,
    z ( x 3 ) = R F ( x 3 x 1 , x 3 x 2 , 0 ) = i R F ( 0 , x 1 x 3 , x 2 x 3 ) .
    4: 20.9 Relations to Other Functions
    20.9.3 R F ( θ 2 2 ( z , q ) θ 2 2 ( 0 , q ) , θ 3 2 ( z , q ) θ 3 2 ( 0 , q ) , θ 4 2 ( z , q ) θ 4 2 ( 0 , q ) ) = θ 1 ( 0 , q ) θ 1 ( z , q ) z ,
    20.9.4 R F ( 0 , θ 3 4 ( 0 , q ) , θ 4 4 ( 0 , q ) ) = 1 2 π ,
    20.9.5 exp ( π R F ( 0 , k 2 , 1 ) R F ( 0 , k 2 , 1 ) ) = q .
    5: 19.24 Inequalities
    For x > 0 , y > 0 , and x y , the complete cases of R F and R G satisfy
    R F ( x , y , 0 ) R G ( x , y , 0 ) > 1 8 π 2 ,
    19.24.10 3 x + y + z R F ( x , y , z ) 1 ( x y z ) 1 / 6 ,
    Other inequalities for R F ( x , y , z ) are given in Carlson (1970). …
    R F ( x , y , z ) R G ( x , y , z ) > 1 ,
    6: 19.28 Integrals of Elliptic Integrals
    19.28.1 0 1 t σ 1 R F ( 0 , t , 1 ) d t = 1 2 ( B ( σ , 1 2 ) ) 2 ,
    19.28.5 z R D ( x , y , t ) d t = 6 R F ( x , y , z ) ,
    19.28.7 0 R J ( x , y , z , r 2 ) d r = 3 2 π R F ( x y , x z , y z ) ,
    19.28.9 0 π / 2 R F ( sin 2 θ cos 2 ( x + y ) , sin 2 θ cos 2 ( x y ) , 1 ) d θ = R F ( 0 , cos 2 x , 1 ) R F ( 0 , cos 2 y , 1 ) ,
    19.28.10 0 R F ( ( a c + b d ) 2 , ( a d + b c ) 2 , 4 a b c d cosh 2 z ) d z = 1 2 R F ( 0 , a 2 , b 2 ) R F ( 0 , c 2 , d 2 ) , a , b , c , d > 0 .
    7: 19.18 Derivatives and Differential Equations
    19.18.2 d d x R G ( x + a , x + b , x + c ) = 1 2 R F ( x + a , x + b , x + c ) .
    19.18.6 ( x + y + z ) R F ( x , y , z ) = 1 2 x y z ,
    19.18.9 ( x x + y y + z z ) R F ( x , y , z ) = 1 2 R F ( x , y , z ) ,
    The next four differential equations apply to the complete case of R F and R G in the form R a ( 1 2 , 1 2 ; z 1 , z 2 ) (see (19.16.20) and (19.16.23)). …
    8: 19.22 Quadratic Transformations
    19.22.1 R F ( 0 , x 2 , y 2 ) = R F ( 0 , x y , a 2 ) ,
    19.22.2 2 R G ( 0 , x 2 , y 2 ) = 4 R G ( 0 , x y , a 2 ) x y R F ( 0 , x y , a 2 ) ,
    19.22.3 2 y 2 R D ( 0 , x 2 , y 2 ) = 1 4 ( y 2 x 2 ) R D ( 0 , x y , a 2 ) + 3 R F ( 0 , x y , a 2 ) .
    19.22.18 R F ( x 2 , y 2 , z 2 ) = R F ( a 2 , z 2 , z + 2 ) ,
    9: 19.36 Methods of Computation
    For R F the polynomial of degree 7, for example, is … All cases of R F , R C , R J , and R D are computed by essentially the same procedure (after transforming Cauchy principal values by means of (19.20.14) and (19.2.20)). …Because of cancellations in (19.26.21) it is advisable to compute R G from R F and R D by (19.21.10) or else to use §19.36(ii). … We compute R F ( 1 , 2 , 4 ) by setting θ = 1 , t 0 = c 0 = 1 , and a 0 = 3 . … Similarly, §19.26(ii) eases the computation of functions such as R F ( x , y , z ) when x ( > 0 ) is small compared with min ( y , z ) . …
    10: 19.26 Addition Theorems
    19.26.1 R F ( x + λ , y + λ , z + λ ) + R F ( x + μ , y + μ , z + μ ) = R F ( x , y , z ) ,
    19.26.8 2 R G ( x + λ , y + λ , z + λ ) + 2 R G ( x + μ , y + μ , z + μ ) = 2 R G ( x , y , z ) + λ R F ( x + λ , y + λ , z + λ ) + μ R F ( x + μ , y + μ , z + μ ) + λ + μ + x + y + z .
    19.26.16 R F ( λ , y + λ , z + λ ) = R F ( 0 , y , z ) R F ( μ , y + μ , z + μ ) , λ μ = y z .
    19.26.18 R F ( x , y , z ) = 2 R F ( x + λ , y + λ , z + λ ) = R F ( x + λ 4 , y + λ 4 , z + λ 4 ) ,
    19.26.21 2 R G ( x , y , z ) = 4 R G ( x + λ , y + λ , z + λ ) λ R F ( x , y , z ) x y z .