About the Project

/shop/%E2%99%9F%F0%9F%AA%90%F0%9F%A6%B8%20Buy%20DNP%20Online%20$0.99%20Per%20Capsule%3A%20%F0%9F%92%A3%20www.BuyDNPOnline.cc%20%F0%9F%92%A3%20Buy%20DNP%20UK%20%F0%9F%A6%B8%F0%9F%AA%90%E2%99%9F%20Buy%20DNP%20In%20Australia%20-%20Buy%20DNP-www.BuyDNPOnline.cc

AdvancedHelp

(0.064 seconds)

11—20 of 983 matching pages

11: Bibliography K
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • M. Kaneko (1997) Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux 9 (1), pp. 221–228.
  • M. K. Kerimov (2008) Overview of some new results concerning the theory and applications of the Rayleigh special function. Comput. Math. Math. Phys. 48 (9), pp. 1454–1507.
  • D. E. Knuth (1992) Two notes on notation. Amer. Math. Monthly 99 (5), pp. 403–422.
  • E. Kreyszig (1957) On the zeros of the Fresnel integrals. Canad. J. Math. 9, pp. 118–131.
  • 12: 9 Airy and Related Functions
    Chapter 9 Airy and Related Functions
    13: Bibliography C
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • R. M. Corless, D. J. Jeffrey, and H. Rasmussen (1992) Numerical evaluation of Airy functions with complex arguments. J. Comput. Phys. 99 (1), pp. 106–114.
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • 14: Bibliography L
  • S. Lai and Y. Chiu (1992) Exact computation of the 9 - j symbols. Comput. Phys. Comm. 70 (3), pp. 544–556.
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • E. M. Lifshitz and L. P. Pitaevskiĭ (1980) Statistical Physics, Part 2: Theory of the Condensed State. Pergamon Press, Oxford.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • Lord Kelvin (1905) Deep water ship-waves. Phil. Mag. 9, pp. 733–757.
  • 15: 16.10 Expansions in Series of F q p Functions
    §16.10 Expansions in Series of F q p Functions
    The following expansion, with appropriate conditions and together with similar results, is given in Fields and Wimp (1961): … The next expansion is given in Nørlund (1955, equation (1.21)): …When | ζ 1 | < 1 the series on the right-hand side converges in the half-plane z < 1 2 . Expansions of the form n = 1 ( ± 1 ) n F p + 1 p ( 𝐚 ; 𝐛 ; n 2 z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).
    16: Bibliography G
  • R. D. M. Garashchuk and J. C. Light (2001) Quasirandom distributed bases for bound problems. J. Chem. Phys. 114 (9), pp. 3929–3939.
  • W. Gautschi (1966) Algorithm 292: Regular Coulomb wave functions. Comm. ACM 9 (11), pp. 793–795.
  • W. Gautschi (1967) Computational aspects of three-term recurrence relations. SIAM Rev. 9 (1), pp. 24–82.
  • K. Goldberg, F. T. Leighton, M. Newman, and S. L. Zuckerman (1976) Tables of binomial coefficients and Stirling numbers. J. Res. Nat. Bur. Standards Sect. B 80B (1), pp. 99–171.
  • R. G. Gordon (1968) Error bounds in equilibrium statistical mechanics. J. Math. Phys. 9, pp. 655–663.
  • 17: 25.13 Periodic Zeta Function
    The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real:
    25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
    F ( x , s ) is periodic in x with period 1, and equals ζ ( s ) when x is an integer. …
    25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
    25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
    18: 15.4 Special Cases
    See the final paragraph in §15.2(ii). …In (15.4.17), (15.4.18) and (15.4.19) when the third entry is a nonpositive integer one has to use the limit interpretation (15.2.6), rather than (15.2.5). Compare the final paragraph in §15.2(ii). … where the limit interpretation (15.2.6), rather than (15.2.5), has to be taken when in (15.4.33) a = 1 3 , 4 3 , 7 3 , , and in (15.4.34) a = 0 , 1 , 2 , . Compare the final paragraph in §15.2(ii). …
    19: 34 3j, 6j, 9j Symbols
    Chapter 34 3 j , 6 j , 9 j Symbols
    20: 34.14 Tables
    §34.14 Tables
    Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Some selected 9 j symbols are also given. … 16-17; for 9 j symbols on p. …  310–332, and for the 9 j symbols on pp. …