About the Project

%E6%A2%AD%E5%93%88%E6%B8%B8%E6%88%8F%E5%A4%A7%E5%8E%85,%E7%BD%91%E4%B8%8A%E6%A2%AD%E5%93%88%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E3%80%90%E5%A4%8D%E5%88%B6%E6%89%93%E5%BC%80%E7%BD%91%E5%9D%80%EF%BC%9A33kk55.com%E3%80%91%E6%AD%A3%E8%A7%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E5%9C%A8%E7%BA%BF%E8%B5%8C%E5%8D%9A%E5%B9%B3%E5%8F%B0,%E6%A2%AD%E5%93%88%E6%B8%B8%E6%88%8F%E7%8E%A9%E6%B3%95%E4%BB%8B%E7%BB%8D,%E7%9C%9F%E4%BA%BA%E6%A2%AD%E5%93%88%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E7%BD%91%E4%B8%8A%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0%E7%BD%91%E5%9D%80YCBNyMNNVhsBhNMy

AdvancedHelp

(0.081 seconds)

11—20 of 673 matching pages

11: 19.36 Methods of Computation
β–ΊFor R F the polynomial of degree 7, for example, is … β–ΊAll cases of R F , R C , R J , and R D are computed by essentially the same procedure (after transforming Cauchy principal values by means of (19.20.14) and (19.2.20)). … β–ΊThe incomplete integrals R F ⁑ ( x , y , z ) and R G ⁑ ( x , y , z ) can be computed by successive transformations in which two of the three variables converge quadratically to a common value and the integrals reduce to R C , accompanied by two quadratically convergent series in the case of R G ; compare Carlson (1965, §§5,6). … β–Ί F ⁑ ( Ο• , k ) can be evaluated by using (19.25.5). …A summary for F ⁑ ( Ο• , k ) is given in Gautschi (1975, §3). …
12: 9.4 Maclaurin Series
β–Ί
9.4.1 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
β–Ί
9.4.2 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) ,
β–Ί
9.4.3 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
β–Ί
9.4.4 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) .
13: 18.8 Differential Equations
β–Ί
Table 18.8.1: Classical OP’s: differential equations A ⁑ ( x ) ⁒ f ′′ ⁑ ( x ) + B ⁑ ( x ) ⁒ f ⁑ ( x ) + C ⁑ ( x ) ⁒ f ⁑ ( x ) + Ξ» n ⁒ f ⁑ ( x ) = 0 .
β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ί
# f ⁑ ( x ) A ⁑ ( x ) B ⁑ ( x ) C ⁑ ( x ) λ n
4 C n ( λ ) ⁑ ( x ) 1 x 2 ( 2 ⁒ λ + 1 ) ⁒ x 0 n ⁒ ( n + 2 ⁒ λ )
8 L n ( α ) ⁑ ( x ) x α + 1 x 0 n
9 e 1 2 ⁒ x 2 ⁒ x α + 1 2 ⁒ L n ( α ) ⁑ ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) ⁒ x 2 4 ⁒ n + 2 ⁒ α + 2
β–Ί
14: 3.3 Interpolation
β–ΊIf f is analytic in a simply-connected domain D 1.13(i)), then for z D , …where C is a simple closed contour in D described in the positive rotational sense and enclosing the points z , z 1 , z 2 , , z n . … β–Ίwhere Ο‰ n + 1 ⁑ ( ΞΆ ) is given by (3.3.3), and C is a simple closed contour in D described in the positive rotational sense and enclosing z 0 , z 1 , , z n . … β–ΊBy using this approximation to x as a new point, x 3 = x , and evaluating [ f 0 , f 1 , f 2 , f 3 ] ⁑ x = 1.12388 6190 , we find that x = 2.33810 7409 , with 9 correct digits. … β–ΊThen by using x 3 in Newton’s interpolation formula, evaluating [ x 0 , x 1 , x 2 , x 3 ] ⁑ f = 0.26608 28233 and recomputing f ⁒ ( x ) , another application of Newton’s rule with starting value x 3 gives the approximation x = 2.33810 7373 , with 8 correct digits. …
15: 18.5 Explicit Representations
β–ΊIn (18.5.4_5) see §26.11 for the Fibonacci numbers F n . … β–ΊIn this equation w ⁑ ( x ) is as in Table 18.3.1, (reproduced in Table 18.5.1), and F ⁑ ( x ) , ΞΊ n are as in Table 18.5.1. … β–ΊFor the definitions of F 1 2 , F 1 1 , and F 0 2 see §16.2. … β–Ί β–ΊSimilarly in the cases of the ultraspherical polynomials C n ( Ξ» ) ⁑ ( x ) and the Laguerre polynomials L n ( Ξ± ) ⁑ ( x ) we assume that Ξ» > 1 2 , Ξ» 0 , and Ξ± > 1 , unless stated otherwise. …
16: Bibliography T
β–Ί
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • β–Ί
  • I. Thompson (2013) Algorithm 926: incomplete gamma functions with negative arguments. ACM Trans. Math. Software 39 (2), pp. Art. 14, 9.
  • β–Ί
  • W. J. Thompson (1994) Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • β–Ί
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ⁒ ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • β–Ί
  • A. A. TuαΊ‘ilin (1971) Theory of the Fresnel integral. USSR Comput. Math. and Math. Phys. 9 (4), pp. 271–279.
  • 17: 15.3 Graphics
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 15.3.1: F ⁑ ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 15.3.2: F ⁑ ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 15.3.3: F ⁑ ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 15.3.4: F ⁑ ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 15.3.5: F ⁑ ( 4 3 , 9 16 ; 14 5 ; x + i ⁒ y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
    18: 14.33 Tables
    β–Ί
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 5–8D; 𝖯 n ⁑ ( x ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 5–7D; 𝖰 n ⁑ ( x ) and 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 6–8D; P n ⁑ ( x ) and P n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 5 , 9 , 10 , x = 1 ⁒ ( .2 ) ⁒ 10 , 6S; Q n ⁑ ( x ) and Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 1 ⁒ ( .2 ) ⁒ 10 , 6S. (Here primes denote derivatives with respect to x .)

  • β–Ί
  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 0 ⁒ ( .1 ) ⁒ 1 , 7D; 𝖯 n ⁑ ( cos ⁑ ΞΈ ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 0 ⁒ ( .1 ) ⁒ 0.9 , 8S; 𝖰 n ⁑ ( cos ⁑ ΞΈ ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖯 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n m = 0 ⁒ ( 1 ) ⁒ 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , 8S; 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) for m = 0 ⁒ ( 1 ) ⁒ 3 , Ξ½ = 0 ⁒ ( .25 ) ⁒ 5 , ΞΈ = 0 ⁒ ( 15 ∘ ) ⁒ 90 ∘ , 5D; P n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 1 ⁒ ( 1 ) ⁒ 10 , 7S; Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 2 ⁒ ( 1 ) ⁒ 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 Ξ½ -zeros of 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) and of its derivative for m = 0 ⁒ ( 1 ) ⁒ 4 , ΞΈ = 10 ∘ , 30 ∘ , 150 ∘ .

  • β–Ί
  • Belousov (1962) tabulates 𝖯 n m ⁑ ( cos ⁑ ΞΈ ) (normalized) for m = 0 ⁒ ( 1 ) ⁒ 36 , n m = 0 ⁒ ( 1 ) ⁒ 56 , ΞΈ = 0 ⁒ ( 2.5 ∘ ) ⁒ 90 ∘ , 6D.

  • 19: Bibliography K
    β–Ί
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B ⁒ C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • β–Ί
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • β–Ί
  • M. Kaneko (1997) Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux 9 (1), pp. 221–228.
  • β–Ί
  • M. K. Kerimov (2008) Overview of some new results concerning the theory and applications of the Rayleigh special function. Comput. Math. Math. Phys. 48 (9), pp. 1454–1507.
  • β–Ί
  • E. Kreyszig (1957) On the zeros of the Fresnel integrals. Canad. J. Math. 9, pp. 118–131.
  • 20: 2.10 Sums and Sequences
    β–ΊFor extensions to Ξ± 0 , higher terms, and other examples, see Olver (1997b, Chapter 8). … β–ΊHence … β–ΊFor generalizations and other examples see Olver (1997b, Chapter 8), Ford (1960), and Berndt and Evans (1984). … β–ΊFor examples see Olver (1997b, Chapters 8, 9). … β–ΊFor other examples and extensions see Olver (1997b, Chapter 8), Olver (1970), Wong (1989, Chapter 2), and Wong and Wyman (1974). …