About the Project

%E6%8A%A2%E5%BA%84%E7%89%9B%E7%89%9B3D%E6%B8%B8%E6%88%8F%E5%A4%A7%E5%8E%85,%E7%BD%91%E4%B8%8A%E6%8A%A2%E5%BA%84%E7%89%9B%E7%89%9B3D%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E3%80%90%E5%A4%8D%E5%88%B6%E6%89%93%E5%BC%80%E7%BD%91%E5%9D%80%EF%BC%9A33kk55.com%E3%80%91%E6%AD%A3%E8%A7%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E5%9C%A8%E7%BA%BF%E8%B5%8C%E5%8D%9A%E5%B9%B3%E5%8F%B0,%E6%8A%A2%E5%BA%84%E7%89%9B%E7%89%9B3D%E6%B8%B8%E6%88%8F%E7%8E%A9%E6%B3%95%E4%BB%8B%E7%BB%8D,%E7%9C%9F%E4%BA%BA%E6%8A%A2%E5%BA%84%E7%89%9B%E7%89%9B3D%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E7%BD%91%E4%B8%8A%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0%E7%BD%91%E5%9D%80YBsCyXMBsMAyNMBM

AdvancedHelp

The terms "b3d", "a33kk55.com", "ybscyxmbsmaynmbm" were not found.Possible alternative terms: "13d", "gcn.com", "bosma".

(0.091 seconds)

1—10 of 673 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 34.12 Physical Applications
§34.12 Physical Applications
β–ΊThe angular momentum coupling coefficients ( 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols) are essential in the fields of nuclear, atomic, and molecular physics. … 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
3: 1.12 Continued Fractions
β–Ί C n is called the n th approximant or convergent to C . A n and B n are called the n th (canonical) numerator and denominator respectively. … β–ΊDefine … β–ΊConversely, C is called an extension of C . … β–ΊThen the convergents C n satisfy …
4: 26.5 Lattice Paths: Catalan Numbers
β–Ί C ⁑ ( n ) is the Catalan number. …(Sixty-six equivalent definitions of C ⁑ ( n ) are given in Stanley (1999, pp. 219–229).) … β–Ί
Table 26.5.1: Catalan numbers.
β–Ί β–Ίβ–Ίβ–Ί
n C ⁑ ( n ) n C ⁑ ( n ) n C ⁑ ( n )
2 2 9 4862 16 353 57670
β–Ί
β–Ί
26.5.3 C ⁑ ( n + 1 ) = k = 0 n C ⁑ ( k ) ⁒ C ⁑ ( n k ) ,
β–Ί
26.5.4 C ⁑ ( n + 1 ) = 2 ⁒ ( 2 ⁒ n + 1 ) n + 2 ⁒ C ⁑ ( n ) ,
5: 34.14 Tables
§34.14 Tables
β–ΊTables of exact values of the squares of the 3 ⁒ j and 6 ⁒ j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols on pp. … β–ΊSome selected 9 ⁒ j symbols are also given. … 16-17; for 9 ⁒ j symbols on p. … β–Ί 310–332, and for the 9 ⁒ j symbols on pp. …
6: 9 Airy and Related Functions
Chapter 9 Airy and Related Functions
7: Bibliography H
β–Ί
  • P. I. HadΕΎi (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 8084, 95 (Russian).
  • β–Ί
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • β–Ί
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • β–Ί
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • β–Ί
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
  • 8: 26.6 Other Lattice Path Numbers
    β–Ί
    Delannoy Number D ⁑ ( m , n )
    β–Ί D ⁑ ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . … β–Ί
    Table 26.6.1: Delannoy numbers D ⁑ ( m , n ) .
    β–Ί β–Ίβ–Ίβ–Ί
    m n
    0 1 2 3 4 5 6 7 8 9 10
    β–Ί
    β–Ί
    Table 26.6.2: Motzkin numbers M ⁑ ( n ) .
    β–Ί β–Ίβ–Ίβ–Ί
    n M ⁑ ( n ) n M ⁑ ( n ) n M ⁑ ( n ) n M ⁑ ( n ) n M ⁑ ( n )
    0 1 4 9 8 323 12 15511 16 8 53467
    β–Ί
    β–Ί
    Table 26.6.3: Narayana numbers N ⁑ ( n , k ) .
    β–Ί β–Ίβ–Ίβ–Ί
    n k
    0 1 2 3 4 5 6 7 8 9 10
    β–Ί
    9: 34 3j, 6j, 9j Symbols
    Chapter 34 3 ⁒ j , 6 ⁒ j , 9 ⁒ j Symbols
    10: 9.4 Maclaurin Series
    β–Ί
    9.4.1 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
    β–Ί
    9.4.2 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) ,
    β–Ί
    9.4.3 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
    β–Ί
    9.4.4 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) .