About the Project

%E5%93%88%E5%B8%8C%E5%A8%B1%E4%B9%90%E5%9F%8E,%E6%95%B0%E5%AD%97%E5%B8%81%E5%8D%9A%E5%BD%A9%E7%BD%91%E7%AB%99,%E5%93%88%E5%B8%8C%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E5%93%88%E5%B8%8C%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E3%80%90%E5%93%88%E5%B8%8C%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%B633kk66.com%E3%80%91%E5%8A%A0%E5%AF%86%E8%B4%A7%E5%B8%81%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E6%95%B0%E5%AD%97%E8%B4%A7%E5%B8%81%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E6%95%B0%E5%AD%97%E5%B8%81%E5%8D%9A%E5%BD%A9%E7%BD%91%E7%AB%99,%E6%95%B0%E5%AD%97%E5%B8%81%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F,%E6%95%B0%E5%AD%97%E5%B8%81%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E3%80%90%E5%A4%8D%E5%88%B6%E6%89%93%E5%BC%80%E2%88%B633kk66.com%E3%80%91

AdvancedHelp

(0.086 seconds)

11—20 of 662 matching pages

11: 10.13 Other Differential Equations
In (10.13.9)–(10.13.11) 𝒞 ν ( z ) , 𝒟 μ ( z ) are any cylinder functions of orders ν , μ , respectively, and ϑ = z ( d / d z ) .
10.13.9 z 2 w ′′′ + 3 z w ′′ + ( 4 z 2 + 1 4 ν 2 ) w + 4 z w = 0 , w = 𝒞 ν ( z ) 𝒟 ν ( z ) ,
10.13.10 z 3 w ′′′ + z ( 4 z 2 + 1 4 ν 2 ) w + ( 4 ν 2 1 ) w = 0 , w = z 𝒞 ν ( z ) 𝒟 ν ( z ) ,
10.13.11 ( ϑ 4 2 ( ν 2 + μ 2 ) ϑ 2 + ( ν 2 μ 2 ) 2 ) w + 4 z 2 ( ϑ + 1 ) ( ϑ + 2 ) w = 0 , w = 𝒞 ν ( z ) 𝒟 μ ( z ) .
See also Watson (1944, pp. 95–100).
12: 27.2 Functions
27.2.9 d ( n ) = d | n 1
It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
13: DLMF Project News
error generating summary
14: Bibliography S
  • F. W. Schäfke and D. Schmidt (1966) Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III. Numer. Math. 8 (1), pp. 68–71.
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • R. Sips (1949) Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales. Trans. Amer. Math. Soc. 66 (1), pp. 93–134 (French).
  • 15: Bibliography C
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 9399.
  • B. C. Carlson (1977a) Elliptic integrals of the first kind. SIAM J. Math. Anal. 8 (2), pp. 231–242.
  • C. W. Clark (1979) Coulomb phase shift. American Journal of Physics 47 (8), pp. 683–684.
  • C. W. Clenshaw, F. W. J. Olver, and P. R. Turner (1989) Level-Index Arithmetic: An Introductory Survey. In Numerical Analysis and Parallel Processing (Lancaster, 1987), P. R. Turner (Ed.), Lecture Notes in Math., Vol. 1397, pp. 95–168.
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • 16: 24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. …
    17: Bibliography N
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • N. Nielsen (1909) Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Leopoldina 90, pp. 123–212.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • Numerical Recipes (commercial C, C++, Fortran 77, and Fortran 90 libraries)
  • H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
  • 18: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995) Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95 (1), pp. 1–71.
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • P. L. Butzer, M. Hauss, and M. Leclerc (1992) Bernoulli numbers and polynomials of arbitrary complex indices. Appl. Math. Lett. 5 (6), pp. 83–88.
  • P. L. Butzer and M. Hauss (1992) Riemann zeta function: Rapidly converging series and integral representations. Appl. Math. Lett. 5 (2), pp. 83–88.
  • 19: Bibliography F
  • H. E. Fettis (1965) Calculation of elliptic integrals of the third kind by means of Gauss’ transformation. Math. Comp. 19 (89), pp. 97–104.
  • A. M. S. Filho and G. Schwachheim (1967) Algorithm 309. Gamma function with arbitrary precision. Comm. ACM 10 (8), pp. 511–512.
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • C. K. Frederickson and P. L. Marston (1994) Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface. J. Acoust. Soc. Amer. 95 (2), pp. 650–660.
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.
  • 20: 19.2 Definitions
    The principal values of K ( k ) and E ( k ) are even functions. …
    §19.2(iv) A Related Function: R C ( x , y )
    Formulas involving Π ( ϕ , α 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ( x , y ) . … When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …For the special cases of R C ( x , x ) and R C ( 0 , y ) see (19.6.15). …