About the Project

%E5%8A%A0%E5%AF%86%E8%B4%A7%E5%B8%81%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E5%8A%A0%E5%AF%86%E8%B4%A7%E5%B8%81%E8%B5%8C%E5%8D%9A%E5%B9%B3%E5%8F%B0,%E6%95%B0%E5%AD%97%E5%B8%81%E5%8D%9A%E5%BD%A9%E7%BD%91%E7%AB%99,%E3%80%90%E8%B5%8C%E5%9C%BA%E7%BD%91%E5%9D%80%E2%88%B633kk66.com%E3%80%91%E6%B3%B0%E8%BE%BE%E5%B8%81%E6%AF%94%E7%89%B9%E5%B8%81%E8%B5%8C%E5%8D%9A%E5%B9%B3%E5%8F%B0,USDT%E6%B3%B0%E8%BE%BE%E5%B8%81%E6%AF%94%E7%89%B9%E5%B8%81%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E6%95%B0%E5%AD%97%E8%B4%A7%E5%B8%81%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E6%95%B0%E5%AD%97%E5%B8%81%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E8%B5%8C%E5%9C%BA%E5%9C%B0%E5%9D%80%E3%80%90%E5%A4%8D%E5%88%B6%E6%89%93%E5%BC%80%E2%88%B633kk66.com%E3%80%91

AdvancedHelp

(0.079 seconds)

21—30 of 749 matching pages

21: 26.6 Other Lattice Path Numbers
Delannoy Number D ( m , n )
D ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . …
Table 26.6.4: Schröder numbers r ( n ) .
n r ( n ) n r ( n ) n r ( n ) n r ( n ) n r ( n )
0 1 4 90 8 41586 12 272 97738 16 2 09271 56706
26.6.12 C ( n ) = k = 1 n N ( n , k ) ,
26.6.13 M ( n ) = k = 0 n ( 1 ) k ( n k ) C ( n + 1 k ) ,
22: 26.13 Permutations: Cycle Notation
An explicit representation of σ can be given by the 2 × n matrix: … is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … For the example (26.13.2), this decomposition is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 1 , 3 ) ( 2 , 3 ) ( 2 , 5 ) ( 5 , 7 ) ( 6 , 8 ) . Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .
23: 33.20 Expansions for Small | ϵ |
f ( 0 , ; r ) = ( 2 r ) 1 / 2 J 2 + 1 ( 8 r ) ,
where …The functions J and I are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by C 0 , 0 = 1 , C 1 , 0 = 0 , and … where A ( ϵ , ) is given by (33.14.11), (33.14.12), and …The functions Y and K are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by (33.20.6). …
24: 20.7 Identities
20.7.15 A A ( τ ) = 1 / θ 4 ( 0 | 2 τ ) ,
20.7.16 θ 1 ( 2 z | 2 τ ) = A θ 1 ( z | τ ) θ 2 ( z | τ ) ,
20.7.22 θ 2 ( 4 z | 4 τ ) = B θ 2 ( 1 8 π z | τ ) θ 2 ( 1 8 π + z | τ ) θ 2 ( 3 8 π z | τ ) θ 2 ( 3 8 π + z | τ ) ,
20.7.23 θ 3 ( 4 z | 4 τ ) = B θ 3 ( 1 8 π z | τ ) θ 3 ( 1 8 π + z | τ ) θ 3 ( 3 8 π z | τ ) θ 3 ( 3 8 π + z | τ ) ,
20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .
25: 3.4 Differentiation
where A k n is as in (3.3.10). … If f can be extended analytically into the complex plane, then from Cauchy’s integral formula (§1.9(iii)) …where C is a simple closed contour described in the positive rotational sense such that C and its interior lie in the domain of analyticity of f , and x 0 is interior to C . Taking C to be a circle of radius r centered at x 0 , we obtain …The integral on the right-hand side can be approximated by the composite trapezoidal rule (3.5.2). …
26: 33.12 Asymptotic Expansions for Large η
A 1 = 1 5 x 2 ,
A 2 = 1 35 ( 2 x 3 + 6 ) ,
A 3 = 1 15750 ( 21 x 7 + 370 x 4 + 580 x ) ,
For asymptotic expansions of F ( η , ρ ) and G ( η , ρ ) when η ± see Temme (2015, Chapter 31). … Then, by application of the results given in §§2.8(iii) and 2.8(iv), two sets of asymptotic expansions can be constructed for F ( η , ρ ) and G ( η , ρ ) when η . …
27: Bibliography N
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • N. Nielsen (1909) Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Leopoldina 90, pp. 123–212.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • Numerical Recipes (commercial C, C++, Fortran 77, and Fortran 90 libraries)
  • H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
  • 28: Bibliography O
  • A. B. Olde Daalhuis (1998b) Hyperterminants. II. J. Comput. Appl. Math. 89 (1), pp. 87–95.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • F. W. J. Olver (1995) On an asymptotic expansion of a ratio of gamma functions. Proc. Roy. Irish Acad. Sect. A 95 (1), pp. 5–9.
  • 29: DLMF Project News
    error generating summary
    30: 16.25 Methods of Computation
    There is, however, an added feature in the numerical solution of differential equations and difference equations (recurrence relations). …Instead a boundary-value problem needs to be formulated and solved. See §§3.6(vii), 3.7(iii), Olde Daalhuis and Olver (1998), Lozier (1980), and Wimp (1984, Chapters 7, 8).